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Abstract
The aim of the paper is to present a heuristic method for extracting the most general decision rules from 
linguistic data describing economic phenomena included in simple decision systems over ontological 
graphs. Such decision systems have been proposed to deal with linguistic attribute values, describing 
objects of interest, which are concepts placed in semantic spaces expressed by means of ontological 
graphs. Ontological graphs deliver some additional knowledge (the so-called background knowledge) 
about semantic relations between concepts which can be useful in classification processes. As heuristics, 
we propose to use Particle Swarm Optimization (PSO ), which is reported as a successful method in 
many applications.
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Introduction

In the majority of cases, data describing economic phenomena have a numeric character . There are 
a lot of statistical and econometric methods developed for this kind of data . However, in economy, 
we meet also situations where phenomena are described by linguistic concepts . We assume that 
linguistic data are included in the so-called decision systems . An important problem concerning 
decision systems is to extract the knowledge hidden in such systems . This knowledge can be ex-
pressed in the form of decision rules . The topic of rule definition and extraction in various deci-
sion systems was widely considered in the literature devoted to inductive machine learning (see: 
Cios et al . 2007; Mitchell 1997) . Therefore, we have also considered decision rules in such systems 
simultaneously with a definition of decision systems over ontological graphs (see: Pancerz 2012a, 
2013a) . In (Pancerz 2012a), elementary decision rules (i .e ., rules having single descriptors on the 
left-hand sides), consistent with the Dominance-Based Rough Set Approach (Greco, Matarazzo, 
and Slowiński 2001), have been investigated . In (Pancerz 2013a), elementary decision rules, defined 
according to different meanings of condition attribute values (exact meaning, synonymous mean-
ing, and general meaning) have been proposed . Now, our investigations are extended to decision 
rules with complex condition parts (i .e ., rules having multi descriptors on the left-hand sides) . 
At the beginning, only a special case is taken into consideration, when descriptors appearing on 
the left-hand sides of rules are linked by the AND logical connectives .
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In the literature, a variety of taxonomies of different types of semantic relations have been 
proposed (e .g ., Chaffin and Hermann 1988; Milstead 2001; Storey 1993; Winston et al . 1987) . 
Relations are very important components in ontology modeling as they describe the relationships 
that can be established between concepts . We touch the problem of semantic relations (mean-
ing relations) considered in linguistics . In general, three basic kinds (families) of relations can be 
distinguished: equivalence relations, hierarchical relations, associative relations (Milstead 2001) . 
For example, synonymy is a kind of an equivalence relation . The generalization (“is-a”) relation is 
the traditional example of hierarchical relations . To deliver the knowledge, called the background 
knowledge, about semantic relations between concepts, we use ontological graphs which are in-
corporated into information or decision systems (Pancerz 2012b) . Similar approaches using data 
semantics in information (decision) systems, have been proposed earlier in the literature: Attribute 
Value Ontology (AVO) (Lukaszewski, Józefowska, and Lawrynowicz 2012), DAG-Decision Systems 
(Midelfart and Komorowski 2002), Dominance-Based Rough Set Approach (DRSA) (Greco, Mata-
razzo, and Slowiński 2001), Rough Ontology (Ishizu et al . 2007), etc .

Most common approach to exploit the background knowledge in data mining is generalization 
of attribute values (concepts) (Han, Cai, and Cercone 1992) . It allows to define abstract concepts 
as generalizations of the primitive ones . Therefore, in the presented approach, we are interested 
in the generalization relation defined in the ontological graphs . This relation leads us to concept 
hierarchies representing the necessary background knowledge which controls the generalization 
process . When attribute values are too specific (concrete, detailed), the discovered knowledge, for 
example in the form of decision rules, tends to become complicated . Moreover, the quality of rule-
based classifiers is dependent, among others, on the levels of abstraction in the data (attribute val-
ues) definition . Too specific data (especially noisy data) cause, among others, extracting meaning-
less knowledge . Moreover, according to Vapnik’s statistical learning theory, an important problem 
is the generalization ability of classifiers (Vapnik 1998) . The influence of levels of data abstraction 
has been considered for different machine learning and data mining problems (e .g ., naive Bayesian 
classification (Łukaszewski et al . 2011)), decision tree induction (Kudoh, Haraguchi, and Okubo 
2003; Nunez 1991), mining association rules (Srikant and Agrawal 1997), etc . In (Pancerz 2013b), 
we have shown how semantic relationships added to decision systems change a look at approxima-
tions of sets in the rough set approach .

In the presented paper, we propose a heuristic method for extracting the most general decision 
rules from linguistic data describing economic phenomena included in simple decision systems over 
ontological graphs . The level of generalization is determined on the basis of hierarchy fixed by a 
generalization relation defined by means of ontological graphs associated with attributes in deci-
sion systems .

1 Simple decision systems over ontological graphs

In this section, we recall necessary definitions, notions and notation concerning simple decision 
systems over ontological graphs provided in our earlier papers (see: Pancerz 2012a, 2012b, 2013a, 
2013b) . Information systems (decision systems) are considered from the Pawlak’s perspective, as 
the knowledge representation systems (see: Pawlak 1991) .

Definition 1. A decision system DS is a tuple DS = (U, C, D, Vc, Vd, c, d ), where:
U is a nonempty, finite set of objects,
C is a nonempty, finite set of condition attributes,
D is a nonempty, finite set of decision attributes,
Vc =

⋃
a∈C
Va , where Va is a set of values of the condition attribute a,

Vd =
⋃
a∈D
Va , where Va is a set of values of the decision attribute a,

c : C × U → Vc is an information function such that c(a, u) ∈ Va for each a ∈ C  and u ∈ U ,
d : D × U → Vd is a decision function such that d(a, u) ∈ Va for each a ∈ D and u ∈ U  .
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In (Pancerz 2013a), we have proposed to consider attribute values describing objects in the 
ontological space, where ontology is constructed on the basis of a controlled vocabulary and the 
relationships of the concepts in the controlled vocabulary (see definitions given by Neches et al . 
(1991) and Kohler et al . (2006)) . In that approach, we use formal representations of ontologies by 
means of graph structures . Such structures are called ontological graphs . For a given ontology O, 
an ontological graph includes nodes representing concepts from O and edges representing relations 
between concepts from O .

Definition 2. Let O be a given ontology . An ontological graph is a quadruple OG = (C, E,R, ρ), 
where:
C  is a nonempty, finite set of nodes representing concepts in the ontology O,
E ⊆ C × C  is a finite set of edges representing relations between concepts from C ,
R is a family of semantic descriptions (in natural language) of types of relations (represented 

by edges) between concepts,
ρ : E → R is a function assigning a semantic description of the relation to each edge .

In the proposed approach, we take into consideration the following family of semantic descriptions 
of relations between concepts: “is synonymous with”, “is generalized by”, “is specialized by” (Pan-
cerz 2012b) . Some other relations are also considered (e .g ., Pancerz 2012b, 2013b) . We will use 
the following notation: R∼ “is synonymous with,” R� “is generalized by,” R� “is specialized by .” 
Therefore, for simplicity R = {R∼, R�, R�} .

The relations mentioned have the following properties: R∼ is reflexive, symmetric and transi-
tive, R� is reflexive and transitive, R� is reflexive and transitive . In the graphical representation 
of the ontological graph, for readability, we will omit reflexivity of relations . However, the above 
relations are reflexive (i .e ., a given concept is synonymous with itself, a given concept is generalized 
by itself, a given concept is specialized by itself) .

We can create decision systems over the ontological graphs . It can be done in different ways . In 
our investigation, condition attribute values of a given decision system are concepts from ontologies 
assigned to attributes . Such a system is called a simple decision system over ontological graphs 
(see: Pancerz 2012b) .

Definition 3. A simple decision system SDSOG over ontological graphs is a tuple 
SDSOG = (U,C,D, {OGa}a∈C , Vd, c, d), where:
U is a nonempty, finite set of objects,
C is a nonempty, finite set of condition attributes,
D is a nonempty, finite set of decision attributes,
{OGa}a∈C  is a family of ontological graphs associated with condition attributes from C,
Vd =

⋃
a∈D
Va is a set of values of the decision attribute a ∈ D,

c : C × U → C , C =
⋃
a∈C
Ca is an information function such that c(a, u) ∈ Ca for each a ∈ C  

 and u ∈ U , Ca is a set of concepts from the graph OGa,
d : D × U → Vd is a decision function such that d(a, u) ∈ Vd for each a ∈ D and u ∈ U  .

Remark 1 . It is not necessary for an information function to be a total function 
(i .e ., c : U × C → C∗ ⊆ C) .

In our approach, we propose to consider some relations defined over sets of attribute values in sim-
ple decision systems over ontological graphs . In the relations defined above we use some additional 
knowledge about relationships between attribute values which is included in ontological graphs .

Let OG = (C, E,R, ρ) be an ontological graph . We will use the following notation: [ci, cj ] is a 
simple path in OG between ci, cj ∈ C , E([ci, cj ]) is a set of edges from E belonging to the simple 
path [ci, cj ], P(OG) is a set of all simple paths in OG . In the literature, there are different defi-
nitions for a simple path in the graph . In this paper, we follow the definition in which a path is 
simple if no node or edge is repeated, with the possible exception that the first node is the same as 
the last . Therefore, the path [ci, cj ] where ci, cj ∈ C  and ci = cj can also be a simple path in OG .
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Definition 4. Let an ontological graph OGa = (Ca, Ea,R, ρa) be associated with the attribute 
a in a simple decision system over ontological graphs, where R = {R∼, R�, R�} .
An exact meaning relation between c1, c2 ∈ Ca is defined as 
(1) EMR(a) = {(c1, c2) ∈ Ca × Ca : c1 = c2} .

A synonym meaning relation between c1, c2 ∈ Ca is defined as

(2) SMR(a) =

{
(c1, c2) ∈ Ca × Ca : ∃

[c1,c2]∈P(OGa)
∀

e∈E([c1,c2])
ρa(e) = R∼

}
 .

A generalization relation GR(a) between c1, c2 ∈ Ca is defined as

(3) GR(a) =

{
(c1, c2) ∈ Ca × Ca : ∃

[c1,c2]∈P(OGa)
∀

e∈E([c1,c2])
ρa(e) ∈ {R∼, R�}

}
 .

A specialization relation SR(a) between c1, c2 ∈ Ca is defined as

(4) SR(a) =

{
(c1, c2) ∈ Ca × Ca : ∃

[c1,c2]∈P(OGa)
∀

e∈E([c1,c2])
ρa(e) ∈ {R∼, R�}

}
 .

If (c1, c2) ∈ SMR(a) then c1 and c2 are synonyms . If (c1, c2) ∈ GR(a) then c1 is generalized 
by c2 . If (c1, c2) ∈ SR(a) then c1 is specialized by c2 .

2 Decision rules in simple decision systems over ontological graphs

Decision rules in simple decision systems over ontological graphs have been considered in (Pancerz 
2013a) (in accordance with different meanings of condition attribute values defined with respect 
to relations between concepts) as well as in (Pancerz 2012a) (in accordance to Dominance-Based 
Rough Set Approach (DRSA) (Greco, Matarazzo, and Slowiński 2001)) . Here, we recall some con-
cepts proposed in (Pancerz 2013a) .

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, c, d) be a simple decision system over ontological 
graphs . Let C =

⋃
a∈C
Ca , where Ca is a set of concepts from the graph OGa associated with a given 

a ∈ C  . For the decision system SDSOG, we define condition descriptors which are expressions (a, v) 
over C and Ca, where a ∈ C  and v ∈ C  as well as decision descriptors which are expressions (a, v) 
over D and Vd, where a ∈ D and v ∈ Vd  .

In a given simple decision system SDSOG = (U,C,D, {OGa}a∈C , Vd, c, d) over ontological 
graphs, we will consider decision rules in the form

(5) (ac1 , vc1) ∧ (ac2 , vc2) ∧ · · · ∧ (ack , vck)⇒ (ad, vd)

where ac1 , ac2 , . . . , ack ∈ C , vci ∈ Caci  of OGaci , i = 1, 2, . . . , k, ad ∈ D, vd ∈ Vd  .

Let UC(a, v) = {u ∈ U : (c(a, u), v) ∈ SR(a) or (c(a, u), v) ∈ SMR(a)}, where a ∈ C ,
and UD(a, v) = {u ∈ U : d(a, u) = v}, where a ∈ D . Decision Rule 2 is true in SDSOG if and 
only if

(6) 


 ⋂
i=1,2,...,k

UC(aci , vci)


 ⊆ UD(ad, vd)

and

(7) 


 ⋂
i=1,2,...,k

UC(aci , vci)


 �= ∅ .

In the presented approach, we are intersted in the most general decision rules true in a given 
simple decision system over ontological graphs . Decision Rule 2 is said to be the most general rule 
with respect to its condition part for a fixed decision part (ad, vd ) if and only if the rule is true in 
SDSOG and the rule
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(8) (ac1 , v
′
c1) ∧ (ac2 , v

′
c2) ∧ · · · ∧ (ack , v

′
ck
)⇒ (ad, vd),

where (vci , v′ci) ∈ GR(aci) but (vci , v′ci) /∈ EMR(aci) according to OGaci , for any i = 1, 2, . . . , k, 
is not true in SDSOG .

3 PSO based searching for the most general decision rules

In this section, we describe the main idea of searching for the most general decision rules in simple 
decision systems over ontological graphs . The presented approach uses heuristics in the form of 
Particle Swarm Optimization (PSO) . PSO is reported as a successful method in many applications 
(Poli 2008; Poli, Kennedy, and Blackwell 2007) . In PSO, a number of simple entities (the particles) 
are placed in the search space of some problem or function, and each evaluates the objective func-
tion at its current location .

In our problem, the particles are placed in the space consisting of concepts from the ontologi-
cal graphs associated with condition attributes in simple decision systems over ontological graphs .

Let SDSOG = (U,C,D, {OGa}a∈C , Vd, c, d), be a simple decision system over ontological 
graphs, where C = {a1, a2, . . . , am} and OGa = (Ca, Ea,R, ρa) for a ∈ C ,  . Each individual in 
the particle swarm is described by three m-dimensional vectors: the current position, the previous 
best position, and the velocity . Therefore, the search space Π = Ca1 × Ca2 × · · · × Cam  and the 
position of the individual c = [vc1 , vc2 , . . . , vcm ], where vci ∈ Cai , for i = 1, 2, . . . ,m . The best po-
sition found so far is determined on the basis of the fitness function taking into consideration levels 
at which concepts vc1 , vc2 , . . . , vcm  are placed in ontological graphs according to a generalization 
relation . The fitness function

(9) χ(c) =
m∑
i=1

δ(vci),

where vci ∈ Cai  in OGai , i = 1, 2, . . . ,m, and δ(vci) = 0 if vci  is a root concept, δ(vci) = 1 if vci  is 
placed at the first level from the root, δ(vci) = 2 if vci  is placed at the second level from the root, 
etc . In our approach, the fitness function is minimized .

For each particle, its movement through the search space is determined by combining some 
aspect of the history of its own current and best positions with those of one or more members of 
the swarm, with some random perturbations . The velocity vector shows numbers of levels that 
we are moving (up or down) in the concept hierarchies determined by generalization relations in 
ontological graphs associated with condition attributes . The movement comes into effect if a new 
position c′ = [v′c1 , v

′
c2 , . . . , v

′
cm ] determines a rule

(10) (a1, v′c1) ∧ (a2, v
′
c2) ∧ · · · ∧ (am, v

′
cm)⇒ (ad, vd)

true in SDSOG .
It is worth noting that if δ(vci) = 0 for some i = 1, 2, . . . ,m, then the concept vci  appearing 

in the rule is a root concept . It means that the atomic formula (ai, vci) can be removed from the 
rule, because the attribute ai is dispensable .

Example 1. Let SDSOG = (U,C,D, {OGa}a∈C , Vd, c, d) be a simple decision system describ-
ing some economic phenomena, represented by a decision table (see tab . 1), over ontological graphs 
shown in figure 1 . C = {Sector,Region} is a set of condition attributes . D = {Level} is a set of 
decision attributes .

Let us fix a decision part as (Level, Medium ) . If one of the individuals in the particle swarm 
is described by a position vector c = [Insurance, Latin America ], then δ(Insurance) = 3 and 
δ(Latin America) = 2, hence χ(c) = 5 . The position vector c determines a rule ρ

(11)  (Sector, Insurance) ∧ (Region, Latin America)⇒ (Level,Medium).

The rule ρ is true in SDSOG . Performing the PSO algorithm, we can obtain that the individual 
is moved in the search space into a new position c' = [Economy Sector, Latin America ] . For this 
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position, δ(Economy Sector) = 0 and δ(Latin America) = 2, hence χ(c) = 2 . The attribute Sec-
tor is dispensable, because of δ(Economy Sector) = 0 . The position vector c' determines a rule ρ'

(12) (Region, Latin America)⇒ (Level,Medium) .

The rule ρ' is also true in SDSOG but it is more general than the rule ρ .

Conclusions and further works

In the paper, we have shown the main idea of searching for the most general decision rules in the 
linguistic data describing economic phenomena included in simple decision systems over ontological 
graphs . The searching space consists of concepts from the ontological graphs associated with con-
dition attributes in such decision systems . The approach is useful if the decision system includes 
a huge number of condition attributes and the brute force method is ineffective . In the future, we 
plan to apply the proposed approach for extraction of rules consistent with the Dominance-Based 
Rough Set Approach in simple decision systems over ontological graphs . Moreover, our attention 
will be focused on more exact development of the PSO procedure .

Tab. 1. A simple decision system over ontological graphs describing some economic phenomena

U/C ⋃ D Sector Region Level
u1 Forestry Northern America High
u2 Forestry Caribbean Medium
u3 Forestry Latin America Medium
u4 Forestry Middle East Low
u5 Mining Middle East High
u6 Financial Services Northern America High
u7 Legal Services Northern America High
u8 Insurance Northern America High
u9 Financial Services Latin America Medium
u0 Legal Services Latin America Medium
u11 Insurance Latin America Medium
u12 Industry Far East High
u13 Industry Asia Pacific Medium
u14 Industry Middle East Medium
u15 Mining Far East Low

Fig. 1. Ontological graphs OGSector and OGRegion associated with the attributes Sector and Region, respectively
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