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Abstract
This article explores the conceptual and theoretical intersections between Punctuated Equilibrium The-
ory (PET) and artifi cial neural networks (NNs) within the context of policy change analysis. Despite 
some similarities between PET and NNs, limited systematic research has been conducted to bridge the 
gap between political science and computer science. The paper addresses this conceptual gap by present-
ing a theory-oriented, explorative examination, focusing on the commonalities in their principles, such 
as information processing, dynamic modeling, and adaptation. The study contributes to methodology- 
and theory-oriented research on policy agendas by extending PET through the incorporation of NNs. 
The article employs a conceptual lens to establish parallels between PET and NNs, emphasizing their 
shared features in dealing with complex, dynamic, and adaptive systems. The exploration of anomalies 
and outliers in policy time-series data serves as a case study to illustrate the potential synergy between 
political science and STEM sciences (science, technology, engineering, and mathematics). The paper 
concludes by proposing avenues for future research that can further integrate these allegedly separate 
disciplines and enhance our understanding of policy dynamics.
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Whoever knows the ways of Nature will more easily notice 
her deviations; and, on the other hand, whoever knows 
her deviations will more accurately describe her ways.

Sir Francis Bacon, Novus Organum, 1620
quoted in (Billor, Hadi, and Velleman 2000)

Introduction

Punctuated Equilibrium Theory (PET) has already secured its place as one of the “classic” ap-
proaches in studying policy processes . PET’s theoretical assumptions and empirical fi ndings are 
insightful for policy students . However, despite its accomplishments, some methodological and 
theoretical developments are contested (Desmarais 2019; Dowding, Hindmoor, and Martin 2013; 
Jones 2016; Padgett 1980; Prindle 2006) . Therefore, the fi rst objective of the following study is 
to contribute to the debate on how to study policy changes over time . This allows for a separate 
study on how punctuations occur in time . For the current purposes, we will deal with quantitatively 
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identifying abrupt changes . The next level of the analysis, which investigates punctuations in sub-
stantive detail, is subject to a separate in-depth case study research design .

One of the main contending theories of PET — that is incrementalism — leaving aside its am-
biguous meanings (Berry 1990), at the very general level assumes that policy outputs reflect policy 
inputs regularly and closely to existing levels (Davis, Dempster, and Wildavsky 1974) . The state of 
relative stasis is to a large extent explained by the political culture and complexity of democratic 
policy-making according to the logic of “muddling through” (Lindblom 1959, 1979) . Thus, one 
could assume that we are between a “dynamic” (PET) and a “static” (incrementalism) approach . 
But, strictly speaking, PET may be perceived as a corollary to incrementalism, since the former 
assumes that most of the time policy changes indeed are modest and tend to be “equilibrium seek-
ing” through positive and negative corrections of punctuations (Baumgartner and Jones 2009; Flink 
and Robinson 2020; Jones and Baumgartner 2005, 112) . PET’s added value is that this pattern 
may, however, change dramatically to cause some severe punctuations . This mixture is dubbed the 
“dynamic model of choice for public policy” (Jones and Baumgartner 2005) .

One of the main features of PET is the description of the policy process in parallel to the in-
formation process . In this way, the policy process starts with inputs (sources), and then it goes 
through throughputs (decisions made according to a bounded rationality scheme and with noise 
friction), resulting in outputs (irregular and punctuated policy shifts) . One of the main reasons for 
these irregularities is “institutional friction .”

This broad description is similar to generic logic that is present in a quite different field: artificial 
neural networks (hereafter, the shortened and well-known version is used: neural networks, NNs) . 
Here, one has an input layer (data), hidden layer(s) (processing units) and output layer (results) . 
This layered structure is designed to mimic its biological archetype in the way information/signals 
are processed . The operation of NNs is based on the presentation of input data, calculation of the 
values of the model parameters (i .e ., “weights”), and setting the output(s) . These calculations are 
possible due to a process called “learning” or “training” of a network, which again resembles the 
natural world . Out of a gamut of possible learning algorithms, one of the most popular is called 
“backpropagation .” Simply put, the network is tasked with making the answer (its output) as close 
as possible to its input . In other words, the main objective is to obtain as small an error as possi-
ble . Hence its name, since errors are calculated (i .e ., propagated) from the last (back) to the first 
network’s layer . Such minimizing strategy is performed iteratively through a series of repeated 
calculations called “epochs .” Interestingly, at the beginning of training a network, random values of 
weights are presented, and then, through backpropagation, they are fine-tuned to lower the overall 
error rate . Such a trained model may generalize its performance, i .e . it may use its “knowledge” to 
challenge new tasks . This feature makes NN flexible, dynamic, and robust — another aspect that 
resembles the biological original .

Surprisingly, as the similarities between PET and NN may have been acknowledged, very little 
systematic research has been done on the similarity of their theoretical assumptions . Thus, the 
paper aims at filling the conceptual gap by bridging the divide between two disciplines: political sci-
ence and computer science . PET’s and neural networks’ principles make both approaches well-suited 
for a more detailed examination . Due to such a research perspective, the following piece is going 
to be theory-oriented, explorative, and introductory, rather than empirical and decisive .

All in all, the study contributes to methodology- and theory-oriented research on policy agendas 
through some extensions to Punctuated Equilibrium Theory . Since the paper is prepared by a po-
litical scientist by training and, presumably, the majority of its prospective readers will be part of 
the political science community, the substantive argument is supported by as little formal notation 
as possible . The paper is structured as follows . First, as a gentle introduction to more detailed 
analysis, basic conceptual similarities between PET and NNs are presented . Second, we proceed 
with the substantive part of the study by empirical assessment that aims at showing possibilities 
present in formal modeling of outliers . This serves as a kind of customized case study designed 
to illustrate possibilities behind merging allegedly different disciplines: political science and STEM 
sciences . Third, the paper concludes with prospective extensions to the future research agenda .
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1 Theory of information processes:  
Punctuated Equilibrium and neural networks

Although there is substantial research on neural networks and Punctuated Equilibrium explana-
tions of policy processes, there is no need to present a detailed literature review . At the same time, 
however, their common features are almost completely overlooked . There are several reasons not 
to ignore these similarities .

Let us start with an issue that is worthy of its own detailed studies: biological inspirations . 
They are manifested in terminology used in analyzing policy processes and neural networks mod-
eling . System, environment, process, signal transmission, noise, equilibrium, stasis, friction, bias, 
dynamics, feedbacks, adaptation, linearity and nonlinearity — these are just a few of the prominent 
examples . When we seek deeper, in the Punctuated Equilibrium field, direct links to evolutionary 
biology are clearly evident (Givel 2010; Jones and Baumgartner 2012; Prindle 2012) . When one 
looks at neural networks, even their own name explicitly evokes their neurophysiological origin . The 
PET approach is largely based on mechanistic and idiosyncratic explanations of policy formulation 
and change whereas (artificial) neural networks are devoted to investigation of information process-
ing mechanisms and ways of their formal modeling . Furthermore, biology-inspired features, such 
as punctuations, anomalies, and novelties, are the main focus here . The last example is a critical 
factor in the mechanisms of survival and habituation of living organisms, since being able to detect 
new phenomena means being able to reduce complex information from the environment to the 
most important question: what is the novelty about? The answer often determines to be a predator 
or a victim (Marsland 2001, 17) . This feature (i .e . the ability to extract information) leads to the 
next argument .

The second reason for the concurrency of PET and NNs stems from the fact that both approaches 
emphasize the role of information processing . In both cases, the problem is conceptualized through 
investigation of collecting, interpreting, prioritizing, and structuring signals from the environment . 
With different levels of methodological sophistication, the ultimate goal to a large extent stays the 
same: exploring, extracting and explaining many latent possibilities in the empirically sound data 
we gather . At the very basic level, to put it bluntly, Punctuated Equilibrium Theory and neural 
networks are nothing more than examples of distributed information processing systems . 1 Their 
structural similarities are clearly illustrated in figure 1 (on next page) .

At the same time, this theory is by no means tantamount to trivial research agendas . In the 
NNs field, for example, the bewildering progress made in a dozen or so years clearly reveals the 
potential of formal modeling and its practical applications in virtually any aspect of everyday life . 
Attention paid to the mechanisms of information loss and selective processing is one of the common 
threads in PET and NNs research . This directly leads to the next point .

Third, both Punctuated Equilibrium Theory and neural networks are indebted to and heavily 
founded in theoretical assumptions rooted in bounded rationality (Jones 1999, 2003; March and 
Simon 1958; Padgett 1980; Simon 1955) . Policy processes tend to be defined by political actors’ 
selective approach to various issues, combined with their cognitive constraints and biases . Likewise, 
formal analyses performed by means of ANNs, such as exploratory data analysis, feature engineer-
ing, and modeling data, require a careful approach to the limits of data processing tools . This issue 
is critical at the individual researcher’s level, when one is devoted to prioritizing one’s own pet ideas 
over empirical evidence hidden in data at hand . Thus, individual cognitive constraints and biases 
are indirectly addressed in ANNs . Shortly, it would be hard not to admit that “disruptive patterns 
of attention” (Hegelich 2017, 66) are present in both approaches .

Fourth, the above point is directly related to a separate argument on many similarities between 
PET and NNs: both are concerned with systems that are complex (Érdi 2008; Simon 2000) . This 
point relates to the way they conceptualize problems under investigation: efforts aimed at dealing 

1. Cf. “Information processing involves collecting, assembling, interpreting, and prioritizing signals from the pol-
icymaking environment” (Jones and Baumgartner 2012, 7) and “A neural network is a massively parallel distributed 
processor made up of simple processing units that has a natural propensity for storing experiential knowledge and 
making it available for use” (Haykin 2009, 2).
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with nonlinearities are one of their most evident earmarks . Interestingly, nonlinearity, as a common 
but unappreciated feature of many systems, was laid as a foundation brick for neural modeling in 
the pioneering work of researches as early as in the 1940s (McCulloch and Pitts 1943) . To put it 
succinctly, variables and processes modeled by neural networks do not need to be normally dis-
tributed . (In fact, we do not need to have any ex ante knowledge of the specific distribution .) By 
the same token, in many policy processes complex interactions do not trigger a normal distribution 
of values of interest . Previous research indicates that this is the case of changes in some policy 
time-series (Jones and Baumgartner 2005) . The picture is even more complicated: patterns of gov-
ernment attention also follow “disproportionate information-processing” (Jones and Baumgartner 
2005, 5), which makes policy outcomes far from being linear . Complex trajectories are predomi-
nantly based on bounded rationality, institutional friction, noise, and limited resources . This leads 
to a similar but separate argument: Punctuated Equilibrium and many neural networks deal with 
dynamic systems .

Fifth, consequently, PET and NNs process information signals in a dynamic manner . That is 
to say that neither of these approaches attributes the same weights to various independent vari-
ables but rather models them accordingly . In Punctuated Equilibrium research this argument is 
expressed as explicitly as it may be: “We think of the traditional political forces such as public 
opinion, interest groups, elections, and other forms of political participation as providing weights 
for the information signals” (Jones and Baumgartner 2012, 9) . Interestingly enough, in the above 
quotation emphasis is given to the word “weights” by the authors themselves . Also, as we know 
from the introductory remarks, the processing of neural network signals is tantamount to setting 
values for the model parameters called weights (according to the ubiquitous convention) (see fig-
ure 1) . Furthermore, network learning itself is most often a dynamic process (albeit not always) .

The next critical feature is that PET and NNs deal with not only complex and dynamic but 
also adaptive systems . Political systems, just like any social arrangement, respond to exogenous 
information and are in the process of constant modification . The same is true for neural network 

Figure 1. Information processing systems: policy process (A) and artificial neuron’s architecture (B).
Source: Diagram A — (Jones and Baumgartner 2005, 162), diagram B — (Wallace et al. 2017, 120).
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models, which basically calculate their weights: this is nothing more than just changing their values 
in many iterations to be able to better optimize network performance . To put it succinctly: new 
information (signal) means a new state (via setting weights) . What is not to be ignored is that the 
result may — and often is — expressed in conditional probability vocabulary . 2

Seventh, except for other contributions, Punctuated Equilibrium Theory sheds some light on 
the question of system changes in terms of “underreacting” and “overreacting” to the information 
delivered . Again, a very similar logic is manifested in neural networks, with the exception that the 
notions used will be, respectively, “underperformance” and “overfitting .” 3 Therefore, data deficiency 
and data redundancy are addressed in both approaches .

Last, but not least, some specifics in the approach toward the phenomena under study are also 
striking . Several arguments have already been mentioned . Here, let us focus on the way informa-
tion is processed . In Punctuated Equilibrium theory, “Change occurs only when the informational 
signals from the external world either are extraordinarily strong, on the other hand, or when the 
signals accumulate over time to overcome the friction . (This latter mechanism is known as error ac-
cumulation .) As a consequence, policy-making systems remain stable until the signals from outside 
exceed a threshold, and then they lurch forward — that is, a policy punctuation occurs; afterward, 
they resume ‘equilibrium’” (Jones and Baumgartner 2012, 8) .

This pattern cannot be more accurate to describe the functioning of biological and, consequently, 
artificial neurons . Here, neurobiologists and science engineers also talk about “activation threshold,” 
“potential accumulation,” “signal processing,”, and “spikes” (when a neuron fires a signal exceeding, 
again, some threshold) . The relevant point to be added here refers to the fact that both concepts 
pay attention to parallel processing of inputs . This extension clearly aims to overcome the limita-
tions to serial processing of information typical of many of the more traditional approaches . For 
a review of the above similarities, please refer to table 1 .

Thus, it is explicitly argued here that Punctuated Equilibrium and neural networks reveal that 
both concepts, despite having different origins and separate secured areas in academia, in fact 
have too much in common to ignore it . Thus, it is even more striking that today there is so little 
research to bridge the divide that itself may be described as artificial . 4 This leads to the main 
objective of the following article, which is to contribute to the crossing of the boundaries between 
two disciplines: political science and computer science . Before considering some justification for 
the claim, however, let us turn to some necessary clarifications of what PET is and what it is not .

Broadly speaking, the Punctuated Equilibrium is a general theory of policy change . It expands 
the “standard model” focused on elections, which has a strong normative, theoretical and empiri-
cal standing . There are, however, some concerns raised: changes that occur between the elections 
and/or when there is no electoral change are predominant . Furthermore, the issue of prioritization 

2. For Punctuated Equilibrium account see (Jones and Baumgartner 2012, 16). Details on probability-driven 
explanation in neural networks may be found in any of elementary sources. On this point, as well as many other 
specifics, see (Garson 1998; Hastie, Tibshirani, and Friedman 2009).

3. The issue is extensively covered in literature. For some basic introductory remarks see, for example, (Colaresi 
and Mahmood 2017, 198–199).

4. For one of notable examples see (Hegelich 2017).

Table 1. Summary of similarities between Punctuated Equilibrium Theory and artificial neural networks

Punctuated Equilibrium Theory Artificial Neural Networks
Biological inspirations evolution neuroscience
Main objective information processing information processing
Bounded rationality directly addressed indirectly addressed
Characteristic of systems under study complexity complexity
Mode of information processing parallel, dynamic and adaptive parallel, dynamic and adaptive
Approach toward data deficiency  
and data redundancy

“underreacting”  
and “overreacting”

“underperformance”  
and “overfitting”
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and framing policy issues is to a large extent underexposed, since the electoral explanation delves 
mostly into procedural questions . The very same is true of lack of ideological coherence: the “elec-
tions matter” argument does not explain why it may be the case that left- or right-wing leaders 
sometimes pursue goals that are not on their core agenda (Jones and Baumgartner 2012, 5–6) . 
Thus, the above limitations opened the way to searching for other forces that validate policy shifts . 
One of the possibilities is to reach for the flows of information in the policy trajectory . Interestingly 
enough, shifts in attention are claimed to be “necessary but not sufficient to bring about policy 
punctuation” (Jones 2016, 44) . Empirical evidence is based mainly on budgetary analysis .

Critical evaluation of Punctuated Equilibrium Theory results in a distinction between two 
aspects of the policy agenda: attention to policy issues and the content (i .e ., subject) of policy 
issues (Dowding, Hindmoor, and Martin 2013, 83) . Attention is simply a measure of the time that 
policy actors spend on a given problem . The concept is operationalized in both the Comparative 
Agendas Project and Policy Agendas Project by such variables as the number of acts passed by 
the legislature, executive branch position taking, public opinion polls, news media coverage, the US 
Supreme Court cases, political parties’ manifestos (platforms), etc . The content, on the other hand, 
seems to be self-evident in light of its name . It is equivalent to specifics included in a given piece of 
legislation . Thus, attention allocated to policy is not the same as its substantive content . With this 
argument in mind, one may acknowledge that this has profound consequences for studying policy 
changes . Indeed, it may be the case that higher levels of attention result in incremental changes 
and, on the other hand, stasis in time allocation does not make the system immune to radical policy 
punctuations (Dowding, Hindmoor, and Martin 2013, 83) .

Any study of the complex trajectories of policy dynamics is determined by a closer investiga-
tion of the phenomenon that has already been mentioned: policy change . Thus, before seeking any 
“explanation of the mechanisms which keep equilibria stable and of those forces or processes which 
undermine that stability” (Howlett 2009, 246), a research agenda needs to embrace the very con-
cept of data variability, which is the focus of the current article . Before delving into more details, 
it is necessary, however, to make some reference to scholarship on studying policy change through 
punctuations .

2 Literature review and conceptual appraisal: outliers

The major issue addressed here, broadly speaking, relates to shifts in policy over time . The prob-
lem must, however, be conceptualized more rigidly and accurately (Howlett 2009, 243) . Having 
acknowledged the already mentioned discussion on the two aspects of the policy agenda (attention 
vs . content), it can be argued that the two dimensions are indeed two sides of the same coin unless 
we strive to pinpoint the basic term: policy shift (policy change, policy punctuation, etc .) . To put 
it in other words, it is claimed that policy attention and policy content are necessary and sufficient 
factors in policy changes but only if we accordingly define the changes themselves . After all, “in-
cremental changes,” “radical punctuations,” “policy shifts” and “large-scale departures from the 
past” (Baumgartner, Jones, and Mortensen 2017) seem to be rather taken for granted in previous 
research, since benchmark sets are as controversial and debatable as they might be . Much of schol-
arship builds on studying punctuations present in budget data (John and Margetts 2003) . Within 
this research strain, some authors suggested that “punctuations” or “non-incremental changes” 
in observations are those data points that change more than 40% (Sebók and Berki 2017), more 
than 30% (Bailey and O’Connor 1975), more or less than 10% (Kemp 1982), above a 20% increase 
and below a 15% decrease in budget distribution (Jones, Baumgartner, and True 1998), or a 35% 
increase and a 25% decrease (Jordan 2003) . Others established a 5% cut-off threshold of the bot-
tom and top changes of the budget data to be “punctuations” (Baumgartner and Epp 2013) . Still 
others, rather than reach for any user-defined cut points for marking the nonincremental changes, 
try to superimpose a normal distribution on the empirical distribution of budgetary changes . This 
approach results in setting thresholds < −33% and > 35 .5% with a margin of ±5% to indicate, 
respectively, a negative and a positive punctuation (Flink 2017; Flink and Robinson 2020; Rob-
inson et al . 2007; Robinson, Flink, and King 2013) . Obviously, there are at least two limitation 
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to such a method . First, it presupposes using normally distributed data — an argument that will 
be critically discussed in some detail below . Second, the above threshold-seeking approaches aim 
at finding a “global” cutoff across all budget functions, whereas it seems to be more justifiable to 
differentiate between categories due to their different extreme values instead of setting a generic 
threshold (Dezhbakhsh, Tohamy, and Aranson 2003, 539–540; Jordan 2003, 352; Munir, Siddiqui, 
Chattha, et al . 2019, 1997) .

Some improvement was suggested in Peter John and Shaun Bevan’s article on punctuations in 
the legislative agenda of the UK Parliament (John and Bevan 2012) . Relying on empirical assess-
ment, the authors proposed a three-category typology of punctuations: procedural, low-salience, 
and high-salience . Methodologically, instead of paying closer attention to the distributional side 
of the issue, they applied a simple punctuation measure based on combining percent changes in 
attention to policy issues across time with the total number of acts passed . However appealing, the 
limitations of this approach are already known: they are related to identifying punctuations with 
a user-defined cutoff . John and Bevan set it at the level of 200% yearly changes .

Thus, we are ready to scrutinize the critical problem of large-scale policy changes measurement 
and, specifically, to address the issue of inappropriateness of setting any threshold for punctuations 
identification by using the percent approach . The necessary preliminary step is to set the relevant 
context — i .e ., describe analytical approaches applicable to variable change research .

Research on meaningful changes in policy has its own, rich tradition (Breunig and Jones 2011; 
Breunig and Koski 2006; Davis, Dempster, and Wildavsky 1974; Flink and Robinson 2020; Hegelich 
2016; Hegelich, Fraune, and Knollmann 2015; Jones et al . 2009; Jones, Baumgartner, and True 
1998; Jordan 2003; Padgett 1980; Wildavsky 1964) . At the same time, however, up to now rela-
tively little attention has been paid to formally pinpointing the idea of these “meaningful changes”; 
research has focused mainly on theoretical assumptions and conceptualizing changes in terms of 
general policy-making processes . This omission is even more glaring if one recalls that significant 
change in many formal approaches is well defined . Furthermore, the classical — i .e ., distributional, 
approach is highly dependent on the normally distributed variable of interest, whereas, as we al-
ready know, this is not always the case .

The above ambiguities are even more important if we move on to conceptual aspects . Exam-
ples of the most common terms that are relevant here in describing meaningful variable changes 
include outliers, anomalies, and novelties . 5 The Merriam-Webster Dictionary 6 defines anomaly as 
“something different, abnormal, peculiar, or not easily classified  .  .  . deviation from the common 
rule .” In the subsequent discussion, all these meanings will be addressed . Obviously, when con-
sidering semantics, the terms outlier (“a statistical observation that is markedly different in value 
from the others of the sample”) and novelty (“something new or unusual”) also apply here . 7 Thus, 
when looking for any broad definition, one may come up with the following one: an anomaly/outlier 
is an observation that differs from the rest . This, however, opens questions related to every single 
word used:

•What is an observation? Is it a point or a series? Is it local or global?
•What does it mean to differ? What measure of deviation should be introduced? Is outlyingness 

a discrete, binary, 0-1 phenomenon? Or, quite the opposite, is it continuous and can it be as-
signed a measure? 

•What is the rest of the dataset? Where must other observations lie in order not to be considered 
outliers?

5. Even the very term variable indicates some fluctuations in a given phenomenon. Other terms used in different 
domains are change point, discordant observation, exception, aberration, surprise, peculiarity, discord, contam-
inant, abnormal object, off-nominal operation, and atypical observation. Consequently, the term outlier is often 
“used by various researchers by different names in different contexts” (Khan and Madden 2014, 347). The original 
reference relates to one-class classification techniques but the observation is also highly relevant to outliers.

6. See: All definitions mentioned below as published in on-line version of “Meriam Webster Dictionary,” available 
at https://www.merriam-webster.com/.

7. Interestingly enough, the dictionary definition is almost equivalent to the well-known wording proposed in the 
late 1960s: “An outlying observation, or ‘outlier,’ is one that appears to deviate markedly from other members of the 
sample in which it occurs” (Grubbs 1969, 1).
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The above issues will be addressed below in some detail . As for now, however, one more issue 
must be clarified . For the current purposes, one should acknowledge that the terms anomaly and 
outlier will be used interchangeably from now on to denote observations that differ from others in 
terms of their features and are relatively rare in data sets in terms of their compliance with sta-
tistical modeling . At the same time, however, it is crucial to keep in mind that not every novelty 
is always an outlier/anomaly, since it may easily fit into a normal observation set . The reason to 
differentiate between the three terms stems mainly from academic jargon: outliers are usually used 
in descriptive statistics, whereas anomalies and novelties are associated with other methods . Also, 
the application domain matters if one speaks of novelties, outliers, or anomalies (Pimentel et al . 
2014, 217) . Most importantly, novelty detection implies that new observations are accommodat-
ed to the already specified data distribution and that they were not included in the training set; 
in anomaly detection this assumption does not always hold . Bearing this in mind, there is a good 
reason to use the terms outlier and anomaly interchangeably in the current analysis (Aggarwal 
2017; Munir, Siddiqui, Dengel, et al . 2019) .

Consequently, in the subsequent discussion, anomaly detection amounts to “the problem of find-
ing patterns in data that do not conform to expected behavior” (Chandola, Banerjee, and Kumar 
2009, 1) . It is worthwhile to notice that the definition does not refer to any particular variable’s 
distribution, be it probable or empirical . The reason for such precaution is that intuitively — and 
sometimes analytically — we are prone to come up with a normal distribution .

And that is the first challenge with anomaly detection: it is a kind of gold standard in descriptive 
and inferential statistics that since we are dealing with anomalies (or abnormal observations), one 
is particularly apt to think in terms of normally distributed data . However, as will be discussed 
below, this normal logic does not always hold . It has profound analytical consequences . One of the 
most important is that approaches based on statistical probability distribution are not capable of 
paying enough attention to the tail of data, the very place where relevant cases (i .e ., anomalies) 
are usually located (Olsson and Holst 2015, 434) .

 Furthermore, apart from being different from the known behavior and its “theoretical distri-
bution” (Kohonen 2001, 390), anomalies are also relatively rare compared to other observations; 
if outliers were not that rare, they would be part of the noise or be indistinguishable from normal 
observations . This makes them even more challenging to study, since the two categories are quite 
often substantially uneven, which hinders many classical statistical approaches . For this single rea-
son, it may be argued that the whole idea of splitting data into validation and test sets is, at best, 
precarious, since it imperils anomalies not being included in any of the sets (Maciąg et al . 2021, 10) .

There is also the third issue of concern: the way anomalies are identified in terms of data 
topology . No matter whether one is able to visualize data two-dimensionally or deals with a mul-
tidimensional phenomenon, there is a critical need to determine if any observation that is off the 
modeled data points is indeed an anomaly or just a false alarm (Brotherton and Johnson 2001) . 
Identification of an anomaly is awkward and burdensome, since in many applications we want to 
know abnormal patterns before they emerge . But how to know what anomaly is if it has not been 
seen before? Logically, it is nothing different from the US Supreme Court’s Justice Steward collo-
quialism “I know it when I see it .” This leads to the next obstacle: measuring anomalies .

To add the fourth point to the mixture of difficulties in anomaly detection research, one needs 
to refer to the issue of evaluating the quality of anomaly detectors . Distance- and density-based 
approaches built on threshold heuristics (see table 2 on page 206) are usually adopted, but soft 
computing-inspired extensions are also suggested (Gogoi et al . 2011) . Also, the well-known confu-
sion matrix may be applied to identify if a model does not find spurious patterns but detects true 
ones — i .e ., a trade-off between, respectively, false positives and true positives is acceptable (Khan 
and Madden 2014, 347; Tax 2001, 15–16) . Applying the right measure is not a trivial question (Hadi, 
Imon, and Werner 2009; Kriegel, Schubert, and Zimek 2017; Schubert et al . 2012) . Consequently, 
some researchers have suggested building ensembles of individual metrics (Aggarwal and Sathe 
2017; Benkabou, Benabdeslem, and Canitia 2018; Zimek, Campello, and Sander 2014) .

Anomalies/outliers come in different flavors . Point anomalies are particular data instances 
that differ substantially from the rest of the data points . On the other hand, collective anomalies 
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are built up of some stacked anomalous data points: for instance, five out of 80 passengers of 
one of the planes used in 9/11 attacks had features that taken individually would probably have 
been ignored (e .g ., not being US citizens, buying one-way tickets, paying in cash, etc .) but when 
aggregated they made those passengers substantially different from the other 75 passengers . 8 Also, 
other empirical analyses showed that, for example, budgetary punctuations may occur in groupings 
within a window of time (Flink and Robinson 2020; Robinson, Flink, and King 2013) . Both point 
and collective anomalies 9 may also form another category, since cases that have features similar 
to other observations but differ in terms of a given context in which they appear are accordingly 
referred to as contextual anomalies . Here, a given pattern may be considered normal in a specific 
process but the very same pattern present in another process may be a manifestation of abnormal 
behavior . An illustrative and anecdotal example of contextual anomaly is the following statement: 
“The novelty of the wife in the best friend’s bed lies neither in the wife, nor the friend, nor the bed, 
but in the unfamiliar conjunction of the three” (O’Keefe and Nadel 1978, 241) .

 With some introductory intricacies discussed, probably some of the most obvious questions for 
now would be the following: Why study anomalies at all? Is there any singularity here? Are anom-
alies idiosyncratic? Are outliers more interesting that inliers? (Hawkins et al . 2002, 170; Williams 
et al . 2002, 1) . Is it not the case that outliers are like fractals, as deleting one of them results in 
a smaller dataset with its own new outliers? (Abbott 2001, 167–168) . While questions like these 
have rather simple answers in many other domains (security applications, fraud detection, disease 
diagnosis, engineering, etc .), the issue requires some scrutiny in policy research . Here, it is argued 
that identifying anomalies is the first and necessary step to find answers to questions that are cru-
cial and more subtle . If we know when abnormal data occur, then we are prone to try to find out 
why they are present at a given time point . The knowledge gained could be utilized to make the 
analysis even more reliable by investigating when and why the system departs from its “normality .”

Furthermore, detecting anomalies is highly relevant methodologically . When labeling anomaly 
observations, one has to decide on the issue of dealing with them . Probably the most obvious and 
tempting suggestion would be to ignore and eliminate any abnormal data . This used to be a stan-
dard procedure for many years due to the sensitivity of many classical approaches to “maverick 
values” with standard regression at the forefront (Jordan 2003, 351) . 10 But is this reject-correct 
approach accurate (Grubbs 1969, 2)? Is it not too “benign” to treat anomalies as noise? By doing 
this, which is known as “data cleaning/data cleansing,” one is vulnerable to, albeit not always con-
cerned with, information cleaning . Therefore, it is important to consider if these atypical observa-
tions do not indicate some meaningful and novel patterns in data . The community concerned with 
“knowledge discovery in databases” addresses the issue from different perspectives (Breunig et al . 
2000; Goldstein and Uchida 2016, 2; Gumbel 1958; Otey, Ghoting, and Parthasarathy 2006, 203) . 
This, almost directly, is expressed in one of the classic definitions of an outlier as “an observation 
which deviates so much from other observations as to arouse suspicions that it was generated by 
a different mechanism” (Hawkins 1980, 1) . All in all, it might well be the case that we are prone to 
adjust a phenomenon under study, as well as data, to the methods used . But should it not be the 
other way around? Should methods and techniques not be determined by data at hand and con-
ceptualized problems? Thus, anomaly detection is perceived here as the very beginning of a more 
conceptually ambitious and large-scale research agenda on policy dynamics . But how to make the 
first necessary step?

Recent developments in data science meet the growing needs of researchers . Currently, there are 
myriad approaches available at different levels of sophistication . Whereas most of them are based 
in the STEM field, some are derived from such remote areas as immunology . One of the examples 

 8. See: “Data-Based Detection of Potential Terrorist Attacks on Airplanes.” by Karen Kafadar and Max D. 
Morris, published on-line by American Statistical Association, section on Statistics in Defense and National Security 
(https://community.amstat.org/sdns/home) [currently not available — Ed.].

 9. Point and collective anomalies are not to be confused with local and global anomalies. A local anomaly dif-
fers from its local neighbors only, whereas a global anomaly deviates across the entire dataset.

10. This “perennial” neglect of outliers goes back to at least the beginning of the 19th century and Legendre’s 
work on least squares (Hadi, Imon, and Werner 2009, 57).
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suggests looking for the mechanisms of the immune system that differentiate between “self” and 
“other” in order to apply them to discriminate inliers from novelties through a “negative-selection 
algorithm” (Dasgupta and Forrest 1996; Forrest et al . 1994; Surace and Worden 2010; Wong, Poll, 
and KrishnaKumar 2005) . Yet, since extensive review of up-to-date research on the subject is 
beyond the scope of the current analysis and is undertaken elsewhere in detail (Bartkowiak 2011; 
Chandola, Banerjee, and Kumar 2009; Gogoi et al . 2011; Goldstein and Uchida 2016; Gupta et 
al . 2014; Hodge and Austin 2004; Khan and Madden 2014; Munir, Siddiqui, Dengel, et al . 2019; 
Pimentel et al . 2014; Xu, Liu, and Yao 2019), a rather rudimentary survey is presented below .

3 Conceptualizing outlier detection

There are at least three research approaches that are relevant to the typology of anomaly detection . 
The review presented below is partially related to Type 1, Type 2, and Type 3 typologies that 
are heavily based on the assumption of ex ante knowledge on the specific distribution of variables 
and available training data (Hodge and Austin 2004) . 11 Consequently, Type 1 assumes no prior 
knowledge of data (unsupervised clustering) and usually applies metrics based on densities and 
distances to evaluate anomaly, Type 2 indicates modeling both normality and abnormality (super-
vised classification), and Type 3 models only normality or sparsely located abnormality, in which 
case new data is confronted with the learned model (semi-supervised recognition) . For the sake of 
clarity, the above types may also be clustered into two broader and widely recognized categories: 
parametric and non-parametric techniques . 12 The issues of anomaly research categorization may 
also be approached through specific methods used . The following paragraphs concisely merge the 
three perspectives — i .e ., (1) the level of supervision, (2) non/parametric approaches, and (3) the 
methods used . The rationale is that in many real-life applications, they often intersect .

First, statistical approaches offer some possible measures for outliers (Barnett and Lewis 1994; 
Grubbs 1969; James et al . 2013, 96–97; Yamanishi et al . 2004) . The general idea is to cope with 
variable densities or probability distributions either in a parametric or nonparametric way . One 
of the most common parametric approaches is calculating the interquartile range (IQR) (Tukey 
1977) . It simply means measuring the distance between the first (Q1) and the third (Q3) quartile 
of a given variable (x) . An outlier is identified when the following relation is met:

(1) x < Q1 − 1 .5·IQR    or    Q3 + 1 .5·IQR < x

The outlier definition based on the 1 .5·IQR approach is also often illustrated with boxplots (Lau-
rikkala, Juhola, and Kentala 2000) . The main issue with the IQR-based measure is well-known: 
the data must follow a Gaussian distribution, since the logic of the 1 .5·IQR threshold (indicating 
99 .3% of data points) follows the boundary of [𝜇 − 3𝜎, 𝜇 + 3𝜎] technique for Gaussian data that 
contains 99 .7% of observations (Chandola, Banerjee, and Kumar 2009, 30) . 13 The idea of treating 
the data as normally distributed is very tempting, since it is justified by intuition: if we are to look 
for abnormal data, let us determine a pattern based on statistical properties of a given statistical 
distribution, and any point that does not fit this pattern is labeled as an anomaly . Unfortunately, 
in practice the issue is not that straightforward . What is a normal pattern? How to define its 
boundaries? Are they clear-cut or rather fuzzy? 14 Is normality time-invariant and context-invari-
ant? How to deal with noise in data and interdependencies of features? Can we always label normal 
and abnormal observations? The answers to these questions are too often negative for the intuitive 

11. For other typologies of outlier detection see — e.g., (Agyemang, Barker, and Alhajj 2006; Chandola, Banerjee, 
and Kumar 2009; Goldstein and Uchida 2016; Khan and Madden 2014; Xu, Liu, and Yao 2019). 

12. There are, however, interesting attempts at bridging the two domains (Knorr, Ng, and Zamar 2001; Williams 
et al. 2002). Formally, there is also a semi-parametric technique.

13. Strictly speaking, statistical techniques assume that data is generated from a particular distribution, not 
necessarily a normal one. This, however, does not help much, since dealing with real data often means noisy and 
multidimensional data with complex interactions between variables and/or observations.

14. Compare with the observation on the “fuzzy nature of outlyingness” (Hawkins et al. 2002, 171).
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and appealing approach to be accepted . 15 (After all, if the issue were that simple, it would not have 
resulted in such a large number of academic reports, articles, and books .)

Thus, a more nuanced approach is suggested: stochastic models . They are designed to study the 
whole distribution of policy outcomes . To put it in other words, “Stochastic process models try to 
ascertain what kinds of probability distributions could have accounted for an observed frequency 
distribution of outcomes  .  .  . A major reason is the recognition of the key importance of extreme 
values in the determination of the time paths of complex systems  .  .  . The more traditional re-
gression studies often relegate these critical values to the error structure of ‘unexplained variance’” 
(Jones, Sulkin, and Larsen 2003, 152) . 

While being informative in broad-frame studies, the stochastic approach has at least one major 
limitation: it is not able to explain why specific punctuations occur in a given year . Therefore, the 
application of this method in investigating attention shifts and agenda setting is questioned and 
some remedies are suggested (Hegelich, Fraune, and Knollmann 2015) . All in all, “policy punctu-
ations that are analyzed as part of the distribution rather than in context” more often than not 
hinder our “understanding [of] the nature of transition points and the underlying factors associated 
with large changes in policy” (John and Bevan 2012, 90) .

The main problem with many approaches based on supervised learning is that they match 
data with already known patterns . Through labeling examples in a training data set as being ei-
ther anomalies or not, the researcher is able to find them relatively easily . Therefore, for example, 
backpropagation neural networks have been exploited for such problems (Augusteijn and Folkert 
2002; Oliveira, Neto, and Meira 2004; Vasconcelos 1995) . This practice becomes a critical issue, 
however, when a new (i .e ., unknown, unexpected, and unlabeled) pattern emerges . For supervised 
frameworks such data will be — for better or worse — just put into already available categories or 
ignored as a noise (the “data cleaning/data cleansing” dilemma) . This lack of complete knowledge 
of novel instances calls many supervised techniques into question (Brotherton and Johnson 2001; 
Ma and Perkins 2003, 613) since, rather than try to find a place for a test observation in already 
predefined categories, one may want “to decide if it belongs to a particular class or not” (Khan 
and Madden 2014, 345) . In such a scenario, another strain of research may be helpful: a family of 
nonparametric and unsupervised approaches . They may be relevant for studying variable anomalies 
through not incorporating too many assumptions (Hawkins et al . 2002, 178) . The argument seems 
to be well-grounded, since previous empirical research indicates that, for example, budget changes 
do not follow a normal distribution but are heavy-tailed distributed (Breunig and Jones 2011; Jones 
et al . 2009) . Thus, as already mentioned, lack of normality makes some techniques a more viable 
option, since they do not need to provide any knowledge on the distribution of a variable . Fur-
thermore, neural networks are able to “deal with the occurrence of patterns that do not share real 
membership with any of the training classes” (Vasconcelos 1995, 25), may “automatically discover 
complex features without having any domain knowledge” (Munir, Siddiqui, Dengel, et al . 2019), and 
are “capable of learning complex class boundaries” (Hodge and Austin 2004, 108) . These attributes 
make NNs well-suited to solving the distribution-undetermined problem . The selected applications 
are covered in table 2 (on next page), which sheds some light on differences and similarities in 
available approaches . 16 Since the paper is not aimed at comprehensive review of these methods, the 
table serves illustrative purposes only .

15. Some authors suggest setting certain thresholds (+/− 10% of a given original data point) to pinpoint anom-
alies when analyzing time series with more sophisticated approaches (Oliveira, Neto, and Meira 2004, 845–846). 
Others search for automated ways of finding thresholds based on parametric and non-parametric logic. For the 
former, deviation is accommodated, whereas for the latter, density distribution may be used (Laptev, Amizadeh, and 
Flint 2015). Notwithstanding the solution, setting the right threshold is critical for model performance (Xu, Liu, and 
Yao 2019, 5).

16. A comprehensive survey may be found for example in (Marsland 2003; Pimentel et al. 2014). For attempts to-
wards combining statistical and neural modeling see for example (Ho, Xie, and Goh 2002; Munir, Siddiqui, Chattha, 
et al. 2019). For the last several years, the hierarchical temporal memory (HTM) approach has also been suggested 
for modeling temporal sequences (Cui, Ahmad, and Hawkins 2016) and “HTM Applications.” https://numenta.com/
machine-intelligence-technology/applications/ (accessed 2020-01-24). Its performance is, however, arguable (Struye 
and Latré 2020). 



Table 2. Selected approaches to anomaly/novelty detection with neural networks

Author(s), year NN architecture “Outlyingness” measure Learning formula
Sykacek, 1997 MLP residuals outside classifier’s 

error bars
supervised

Brotherton and Johnson, 
2001

RBF Mahalanobis distance unsupervised

Hawkins et al ., 2002 replicator NN (autoen-
coder)

mean reconstruction error 
(mean square error)

semi-supervised

Williams et al ., 2002 replicator NN (autoen-
coder)

mean reconstruction error 
(mean square error)

semi-supervised

Augusteijn and Folkert, 
2002

probabilistic NN probability-based supervised

Augusteijn and Folkert, 
2002

MLP Euclidean distance supervised

Oliveira, Neto, and Me-
ira, 2004

MLP + RBF area around time series windows supervised

Oliveira, and Meira, 2006 MLP + recurrent (Elman) robust confidence intervals supervised
Barreto and Aguayo, 
2009

competitive neural ne-
tworks

decision thresholds based on 
quantization errors

unsupervised

Lavin and Ahmad, 2015 HTM threshold heuristics: scoring 
function of anomaly windows

unsupervised

Marchi et al ., 2015 LSTM reconstruction error semi-supervised
Malhorta et al . 2015 stacked LSTM prediction error semi-supervised
Bontemps et al ., 2016 LSTM relative error threshold semi-supervised
Kanarachos et al ., 2017 deep temporal NN + di-

screte wavelet analysis + 
Hilbert transformation

Receiver Operating Characteri-
stics (ROC)

semi-supervised

Hasani, 2017 HTM threshold heuristics: probabili-
stic model of prediction error → 
likelihood of an anomaly

unsupervised

Ahmad et al ., 2017 HTM threshold heuristics: probabili-
stic model of prediction error → 
likelihood of an anomaly

unsupervised

Wu, Zeng, and Yan, 2018 HTM threshold heuristics: probabili-
stic model of prediction error → 
likelihood of an anomaly

unsupervised

Rodriguez, Kotagiri, and 
Buyya, 2018

HTM threshold heuristics: probabili-
stic model of prediction error → 
likelihood of an anomaly

unsupervised

Amarbayasgalan, Jargal-
saikhan, and Ryu, 2018

deep learning autoencoder reconstruction error + optimal 
outlier threshold from retrained 
model

unsupervised

Munir, Siddiqui, Dengel, 
et al . 2019

convolutional NN distance between the predicted 
value and the actual value ba-
sed on Euclidean distance

unsupervised

Munir, Siddiqui, Chattha, 
et al . 2019

convolutional NN distance between the predicted 
value and the actual value ba-
sed on Euclidean distance

unsupervised

Note: Entries are presented in a chronological order.
Abbreviations: NN — neural network; MLP — multilayer perceptron, RBF — radial basis function, HTM — Hierarchical Tem-

poral Memory, LSTM — Long Short Term Memory.
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This flexibility is accompanied by another distinctive feature . Artificial neural networks — as 
well as other machine learning techniques — are well-suited for a research agenda that is focused 
not on inference but on accuracy . However interesting, this makes NNs also hard to interpret, since 
the models often follow the black-box allegory (Hegelich 2016, 117) . 17 Notwithstanding the gamut of 
possible methods based on neural networks, their general logic is based on constructing classifiers 
through modeling the input data . Then, the reconstruction error is defined as a difference between 
the test data and the output . This metrics serves as an anomaly score .

Conclusion

Taking into account the above discussion, it is argued here that each of the anomaly detection 
techniques has its unique strengths and weaknesses . Thus, the dilemma which one is the best 
may be seen rather as a kind of optimization problem: Is the tool good enough (or better than its 
competitors) to be used, considering our data and research design? The argument presented here 
seems to shed some light on the issue by pointing to the need to inspect the very nature of the 
process being modeled . It is argued that many policy-oriented data do not contain any arbitrarily 
predefined “normal” or “abnormal” data points . To put it in other words, it is acknowledged that 
data points are somehow spread across the distribution and some of them just lie far from the 
mean . Obviously, this statement must be operationalized rigorously, since the critical issue is to 
determine any measure of the “farness .” In order to do so, the pending problem seems to fall in 
an unsupervised clustering family of techniques . 18 Consequently, the rationale is that we are to 
come to terms with anomaly detection considering natural (but not necessarily normal) features 
of data . This would enable us to treat anomalies independently of any arbitrarily set thresholds 
(Xu, Liu, and Yao 2019, 5) . To put it succinctly, in unsupervised networks their nodes compete for 
the common features present in the input vectors . 19

Several points mentioned above were intended to show how much a given political science the-
ory (PET) and one of formal modeling techniques (artificial neural networks) have in common in 
their theoretical appearances — notwithstanding their idiosyncrasies . This seems to pave the way 
for further studies . Future extensions to the research are needed in several areas, and empirical 
testing is probably one of the most obvious choices here .
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