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Abstract
The paper concerns certain pitfalls of using the Moore-Penrose pseudoinverse for estimating regression 
coefficients in linear regression models when the matrix of explanatory variables has not full column rank. 
The aim of the paper is to show that in this case estimator of parameters based on the Moore-Penrose 
pseudoinverse is biased, and the bias leads to biased forecasts.
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Introduction

The multiple linear regression model is one of the most popular models in statistics . It is used to 
explain the relationship between a continuous dependent variable and the so-called explanatory (in-
dependent) variables . One of the basic assumptions of the linear regression model is that the matrix 
of explanatory variables (U) has full column rank . This condition is necessary and sufficient for the 
existence of the inverse of UT U, and in consequence — for the existence and uniqueness of solution 
of the normal equations, based on which the ordinary least squares (OLS) estimator is obtained . 
In other words, the OLS estimator requires that matrix UT U is non-singular, which is not the case 
if the matrix of explanatory variables (U) has not full column rank . If matrix UT U is singular, then 
the normal equations have an infinite number of solutions . In this case (Popławski and Kaczmarczyk 
2016) have proposed to select one of them, which is based on the Moore-Penrose pseudoinverse for 
UT U They have called this procedure “the UEK method” or “the UEK formula .” This formula has 
been applied by Kawa and Kaczmarczyk (2012), and by Popławski and Kaczmarczyk (2013, 2016) . 
In this short note, we show that the estimator of linear regression coefficients based on the Moore-
Penrose pseudoinverse is biased and its bias depends on the unknown regression coefficients . More-
over, any prediction based on Moore-Penrose pseudoinverse is unreliable because of unknown bias .

1 The UEK method within the regression model

Let us formalize the UEK method applied by Popławski and Kaczmarczyk (2016) . We assume that 
an n × 1 vector of observations K on the dependent variable (also called response variable) satis-
fies the following equation:

(1) K = UE + ε,

where U is an n × m matrix of explanatory variables (also called independent variables), E is 
an m × 1 vector of unknown regression coefficients, and ε = (ε1, ε2, . . . , εn)T  is an n × 1 vector of 
random variables . Moreover, we assume that elements of ε are uncorrelated with each other, each 
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with mean zero and common variance σ2 > 0, that is E(ε) = 0 and E(εεT ) = σ2I, where I is an 
n × n unit matrix .

It is well known that if U is a nonstochastic matrix with rank m, then the ordinary least squares 
estimator, Ê, is the best linear unbiased estimator of E (Goldberger 1964):

(2) Ê = (UT U)−1UT K .

When the matrix UT U is singular (this occurs, for example, when the number of observations is 
smaller than the number of regression coefficients), the ordinary least squares estimator, given by 
the formula (2), does not exist . In this case Popławski and Kaczmarczyk (2016) have proposed to 
use the Moore-Penrose pseudoinverse of U, and they obtained

(3) Ê+ = U+K,

where U+ is the Moore-Penrose pseudoinverse of matrix U . The expression Ê+ is the solution with 
respect to E of the linear system of equations (so-called the normal equations) UT UE = UT K .( 1) 
Moreover, ‖ Ê+ ‖( 2) attains its minimum value over the solution set of the normal equations, 
S = {E : UTUE = UTK} (the solution which attains its minimum value over the set S is unique) 
(Harville 2008, 512) . For any matrix U : U+ = UT (UUT )+ = (UT U)+UT  (Harville 2008, 510), thus 
Ê+ = (UT U)+UT K . Consequently, when matrix UT U is nonsingular Ê+ = Ê (since (UT U)+ = (UT U)−1) .

Let us assume that matrix U is nonstochastic (deterministic) . Thus, when matrix UT U is sin-
gular (for whatever reason), it is easy to conclude that Ê+ is not an unbiased estimator . In fact

(4) E(Ê+) = E(U+K) = E
(
U+(UE + ε)

)
= U+UE

and the bias is equal to
(5) E(Ê+) − E = (U+U − I)E .

It is also simple to obtain the covariance matrix of Ê+ , which is equal to

(6)  V(Ê+) = E
([

Ê+ − E(Ê+)
] [

Ê+ − E(Ê+)
]T )
= E
(
U+εεT (U+)T

)
= σ2U+(U+)T = σ2(UT U)+ ,

since Ê+ − E(Ê+) = U+K − U+UE = U+(UE + ε) − U+UE = U+ε .

It is easy to conclude that

(7) s2 =
(K − UÊ+)T (K − UÊ+)

n − tr
(
(UT U)+UT U

) ,( 3)

is an unbiased estimator σ2 = var(εi) . Of course, in the case of a perfect fit (when K and UÊ+co-
incide), the common variance of each random disturbance εi for i = 1, 2, . . . , n cannot be evaluated .

To summarize, when matrix UT U is singular, Ê+ is a biased estimator of E, and its bias de-
pends on the unknown vector of parameters, E . Moreover, in that case, information from outside 
the sample must be added to the sample information in order to estimate all regression coefficients 
(Zellner 1996, 75) . It is worth to note that if matrix UT U is nonsingular, then the OLS estima-
tor based on the Moore-Penrose pseudoinverse is an unbiased estimator of E, because, as it was 
mentioned above, Ê+ = Ê .

2 Prediction With MP-pseudoinverse

One of the main purposes of estimating the vector of parameter in equation (1) is to make predic-
tions of the “future” value of K associated with some values of U not observed in the sample . Sup-
pose that the value of the explanatory variable vector is Ũ . It may be a newly observed value (n + 1) 
or a hypothetical value . We want to predict the value of Kn+1 conditional on Ũ . Such prediction is 

1. If matrix U is not of rank m, then matrix UT U is singular and the linear system of equations UT UE = UT K
has an infinite number of solutions.

2. ‖ · ‖ denotes the (usual) norm of a vector.
3. The symbol tr(A) denotes the trace of matrix A.
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usually based on the assumption that the linear regression model still holds in the prediction period, 
that is Kn+1 = ŨE + εn+1 , where εn+1  represents the stochastic disturbance term in the forecast 
period, and it is assumed that E(εn+1) = 0, var(εn+1) = σ2 and cov(εn+1, εi) = 0 for i = 1, 2, . . . , n .

The expected value of Kn+1 is equal to E(Kn+1) = ŨE . Note that although the estimator Ê+ is 
biased, UÊ+ is an unbiased estimator of UE . In fact, we can write

(8) E(UÊ+) = E
(
U(UT U)+UT K

)
= E
(
U(UT U)+UT (UE + ε)

)
=

= E
(
U(UT U)+UT UE

)
+ E
(
U(UT U)+UTε

)
=

= E(UU+UE) + U(UT U)+UT E(ε) =

= UE,

since UU+U = U . Unfortunately, this property of Ê+ cannot be applied to prediction problems for 
Ũ � wT U, where w is an n × 1 vector of known elements . If one assumes that the point predictor 
is K̃ = ŨÊ+ , analogous to that in the linear regression models, then one obtains a biased predictor 
of ŨE . The expected value of the discrepancy between the forecast and actual values (between K̃  
and Kn+1 , respectively) is

(9) E(K̃ − Kn+1) = E(ŨÊ+ − ŨE − εn+1) = ŨE(Ê+ − E) = Ũ(U+U − I)E .

Again, if U+U � I , the expected discrepancy between the forecast and actual values depends 
on the unknown vector E . In consequence, the prediction based on Ê+  (which then is differ-
ent from Ê) is unreliable, because it is biased . From the definition of Ê+  and assumption that 
the random disturbances are uncorrelated we can obtain the variance of the prediction error:
var(K̃ − Kn+1) = σ2

[
Ũ(UT U)+ŨT + Im

]
 . Of course, if (UT U)+ = (UT U)−1the variance of the predic-

tion error is equal to that obtained using the OLS estimator . However, in the case of a perfect fit, 
as in Popławski and Kaczmarczyk (2016), the variance of εi , σ2 , cannot be evaluated .

3 Numerical illustration

Let us consider the following example to illustrate consequences of the application of the UEK for-
mula . A dependent variable is assumed to be generated by K = UE + ε, where ε has the normal dis-
tribution with mean 0 and variance 1 . Moreover: U = [2 7 5], E = [2 3 5]T , ε = −0,1 (the value of 
the observation drawn from the normal distribution), and then K = [49,9] . 4 In this case the vector 
of parameters, E, is known, but suppose that we want to estimate the value of E using observations 
of U and K . First of all, in our example matrix UT U is singular as in Popławski and Kaczmarczyk 
(2016) . The estimate of E with the use of MP-pseudoinverse is Ê+ ≈ [1,2795 4,4782 3,1987]T ; this 
in turn implies that K̂+ = UÊ+ = [49,9] .

Let us now consider Ũ = [4 12 3] and K2 = ŨE + 0 = [59] . Using the UEK formula for predic-
tion K2  we get the following result: K̃ = ŨÊ+ ≈ [68,4526]  . Hence, the forecast error is equal to 
K̃ − K2 ≈ 9,4526 . Suppose now that the units of measurement of explanatory variables are changed . 
Change of the scale of the variables results in a corresponding change in the scale of the coeffi-
cients . The first component of U is divided by 1000, and the first component of E is just multiplied 
by 1000 . In turn, the second component of U is divided by 100, and the second component of E is 
multiplied by 100 . We get exactly the same value for K . Now, in our example U = [0,002 0,07 5], 
thus E = [2000 300 5]T , and K = [49,9] . The estimate of E using MP-pseudoinverse matrix is now 
as follows: Ê+ ≈ [0,004 0,1397 9,978]T , which in turn implies K̂+ = UÊ+ = [49,9] . Similarly, the 
units of measurement of Ũ are changed: Ũ = [0,004 0,12 3] . Also, in that case K2 = ŨE = [59] . 
Using the UEK formula for prediction of K2 yields the following result: K̃ = ŨÊ+ ≈ [29,9509] . Hence, 
the error of the prediction is equal to −29,0491 . As we can see, forecasting performance can depend 
on the units of measurement of explanatory variables .

4. [In the journal European practice of number notation is followed — for example, 36 333,33 (European style) 
= 36 333.33 (Canadian style) = 36,333.33 (US and British style). — Ed.]
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The numerical illustration also shows that, when the matrix UT U is singular, MP-pseudoinverse 
estimates of the vector E cannot be interpreted as OLS estimates — i .e ., as the estimate of ceteris 
paribus effects of explanatory variables on the expected value of the dependent variable . In other 
words, the components of Ê+ do not have useful interpretations, and therefore the UEK method 
is useless .

Conclusions and Remarks

When the matrix UT U is singular, the estimator based on MP-pseudoinverse is inappropriate 
for at least two reasons . First, the estimator Ê+ is biased, and its bias depends on the unknown 
true value of E . Second, the point prediction based on this estimator can depend on the units of 
measurement of explanatory variables . Moreover, when the estimator based on MP-pseudoinverse 
provides a perfect fit to the data, the estimator of error variance — given by equation (7) — is equal 
to zero, although the random vector ε is non-degenerate (not equal to 0 with probability of 1) and 
estimates of the parameter vector are not equal to its real value . In consequence, the ideal fitness 
in the sample does not lead to good forecasting performance .

When in the linear regression model the matrix UT U is singular, an unbiased estimator of all 
coefficients (parameters) cannot be obtained based on information known only from the data . One 
of possible solutions of this problem is to use additional information which comes from outside of 
the sample — e .g ., an individual investigator’s information (subjective but not unfounded beliefs 
about what the true value of E is likely to be, prior to looking at the data) as in the Bayesian 
inference (Zellner 1996) .
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