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Abstract
Methods of temporal disaggregation are used to obtain high frequency time series from the same low fre-
quency time series — so-called disaggregation—with respect to some additional consistency conditions 
between low and high frequency series. Conditions depend on the nature of the data — e.g., stack, flow, 
average and may pertain to the sum, the last value and the average of the obtained high frequency se-
ries, respectively. Temporal disaggregation methods are widely used all-over the world to disaggregate 
for example quarterly GDP. These methods are usually two-stage methods which consist of regression 
and benchmarking. In this article we propose a method which performs regression and benchmarking at 
the same time and allows to set a trade-off between them.
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Introduction

Nowadays policy making requires continuous evaluation of decisions they made . Evaluation is of-
ten carried out with a use of economic indicators produced by official statistics . Decision makers on 
national and regional level cannot immediately adjust their strategies if the monitoring indicators 
are produced with irrelevant frequency . Therefore, official statistics is looking for methods which 
enable to meet the needs for data of the higher frequency . One of the solutions is to collect data 
with increased frequency . But it raises burden of interviewees and it is not a desired direction . 
Thus, official statistics and scientists developed many methods to deal with so-called temporal 
disaggregation . Basically, we can divide these methods into two groups . The first one consists of 
smoothing methods (Chamberlin 2010, 108) that do not use any additional indicators (e .g ., cubic 
spines or Boot, Feibes and Lisman (BFL) smoothing method) . The second one is based on the use 
of additional high frequency data (Sax and Steiner 2013, 80) — e .g ., Denton (1971), Denton-Cho-
lette (Dagum and Cholette 2006), Chow-Lin (Chow and Lin 1971), Fernandez (1981), Litterman 
(1983) . In the next section we present problem set up and quick review of methods .

1 Methods of temporal disaggregation

Assume that Yl×1 is a vector of low frequency data and Xh×k  is a matrix of k variables of high 
frequency data . Let Al×h be an aggregation matrix such that AX is low frequency data . We want 
to estimate high frequency vector yh×1 such that linear constrains of the form Y = Ay are met . For 
example, assume that we want to disaggregate yearly flow data to quarterly flow data of (e .g ., GDP) . 
Then h = 4l and we can set Al×h = Il ⊗ 14′ where ⊗ and ′ denotes Kronecker product and trans-
position, respectively . For stack data (e .g ., unemployment rate) we would set Al×h = Il ⊗ [1 1 1 1] .

The first stage of temporal disaggregation is regression . With a use of additional variables we 
produce preliminary estimate ph×1 of y . Discrepancy between Y and Ap has form u = Y − Ap . 
Then we distribute among in a following way:
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(1) y = p+Du,

where D is a distribution matrix such that Y = Ay holds .
In Denton and Denton-Cholette methods there is used only one variable p = Xh×1  . Particularly, 
we may use a constant and then it can be considered as simple mathematical method . In fact, there 
is no regression in Denton-like methods . If we use an indicator, the best choice is to pick a variable 
which is a component of Y . For example, to disaggregate quarterly exports with a use of monthly 
exports of goods . But is not always the case .

Let u = Ae . Chow-Lin, Fernandez and Litterman use Generalized Least Squares Regression on 
low frequency data of k ≥ 1 variables on a model expressed

(2) Y = AXβ +Ae

with respect variance-covariance matrix U of u . We have U = AEA′  . In a result, p = Xβ̂ , where
(3) β̂(E) = [X ′A′U−1AX]−1X ′A′U−1Y  .

The second stage of temporal disaggregation is benchmarking . It is a solution y of minimizing
(4) (y −Xβ̂)′E−1(y −Xβ̂)

with respect to linear constraint Y = Ay . We obtain
(5) y = Xβ̂ + EA′U−1(Y −AXβ̂) = Xβ̂ +Du .

Thus, the distribution matrix D takes form
(6) D = EA′U−1

and it is common for all methods mentioned above . The methods differ with respect to the way of 
estimating the variance-covariance matrix E .

Denton method enables several approaches to define E:
•E = I  in a case of minimizing squared absolute deviation from indicator series (additive method)
•E = Diag(X)Diag(X) in a case of minimizing squared relative deviation from indicator series 

(proportional method)
•E = (H ′H)−1 in a case of minimizing squared absolute deviation from differenced indicator 

series, where has H 1 on main diagonal, −1 on the first subdiagonal and 0 elsewhere
•E = Diag(X)(H ′H)−1Diag(X) in a case of minimizing squared relative deviation from dif-

ferenced indicator series
Last two approaches focus on preserving period-to-period changes, additive and relative, respectively .

Chow-Lin, Fernandez and Litterman methods model high frequency time series . They assume 
that

(7) et = δet−1 + vt ,
(8) vt = θvt−1 + εt ,

where εt ∼WN(0, σε) is a white noise process .
For Chow-Lin θ = 0, |δ| < 1, thus et is autoregressive process of the first order . Covariance matrix 
has a form E =

(
σ2ε/(1− δ)

)
R, where R = [rij ] and rij = δi+j−1 for i �= j and rii = 1 . Litter-

man assumes that θ = 0, δ = 1 and E = σ2ε(H ′H)−1  . Fernandez assumes that |θ| < 1, δ = 1 and 
E = σ2ε(H

′Q′QH)−1 , where Q has 1 on main diagonal, −𝜃 on first subdiagonal and 0 elsewhere .
Autoregressive parameter is estimated usually from low frequency time series of residuals ut . 

There are two approaches to estimate autoregressive parameter . The first is based on maximizing 
likelihood

(9) L(δ, σ2ε , β) =
e−
1
2u
′U−1u

(2π)
l
2 (detU)

1
2

 .
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In the second one we minimize sum of squares of residual with respect to variance-covariance 
matrix U = AEA′

(10) RSS(δ, σ2ε , β) = u
′U−1u .

Chow-Lin, Fernandez and Litterman methods distribute residuals in very similar way as additive 
Denton method . As it will be shown further, additive distribution may result with unacceptable 
outcomes (e .g ., negative values in a case of poor regression stage of temporal disaggregation) . Thus, 
it may be a disadvantage of those methods .

2 Proposition

Clearly, estimated high frequency error term e = Du depends on previous estimation of 𝛽	 . Poor re-
sults of regression may lead to unacceptable benchmarking outcome . All of the methods mentioned 
above are based on that two-stage procedure . There is no possibility to set a trade-off between 
regression an benchmarking . We propose a method that allows to estimate 𝛽	 and e at the same 
time and to control where we put an emphasis — on regression or benchmarking .

2.1 Additive approach
At first, we start from the equation (2) . Let B be a variance-covariance matrix of 𝛽	 . We shall 
minimize

(11) e′E−1e+ β′B−1β

with respect to linear constraint Y = AXβ +Ae . The term β′B−1β is a regularization term . 
In a case B = I, this term is equal to ‖β‖22 — squared Euclidean norm of vector 𝛽	 . Regularization 
term is often used to prevent overfitting . In this case it enables to change focus from regression 
to benchmarking . In this approach 𝛽	 does not stem from minimizing sum of squared residuals  
u′u, but just from regularization term and benchmarking . Using Lagrange multipliers method we 
obtain

(12) e = EA′(AEA′ +AXBX ′A′)−1Y ,
(13) β = BX ′A′(AEA′ +AXBX ′A′)−1Y  .

In consequence
(14) y = Xβ + e = (XBX ′A′ + EA′)(AEA′ +AXBX ′A′)−1Y  .

What is worth to notice, (12) and (13) shows that estimates of 𝛽	 and e depend on a common com-
ponent (AEA′ +AXBX ′A′)−1 , which defines the trade-off between regression and benchmarking . 
Checking the constraint (2) we have

(15) Ay = (AXBX ′A′ +AEA′)(AEA′ +AXBX ′A′)−1Y = Y  .

One may pose a question why not to obtain 𝛽	 with classical GLS method . Suppose we are inter-
ested in deriving 𝛽	 from minimizing sum of squared residuals u′u instead using regularization 
term . Let U = AEA′  . In this approach we drop regularization term . We shall minimize

(16) e′E−1e+ u′U−1u .

It is equivalent to
(17) e′E−1e+ (Y −AXβ)′U−1(Y −AXβ) .

Let V = (X ′A′U−1AX)−1  . Using Lagrange multipliers method we obtain
(18) e = EA′(U +AXVX ′A′)−1(AXVX ′A′U−1 + I)Y ,

(19) β =
((
V − V X ′A′(U +AXVX ′A′)−1AXV

)
X ′A′U−1 − V X ′A′

(
U +AXVX ′A′

)−1)
Y  .
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Using the fact that if K and L are symmetric, then KL = LK, we obtain

(20) Ae = AEA′(U +AXVX ′A′)−1(AXVX ′A′U−1 + I)Y

= U(U +AXVX ′A′)−1(AXVX ′A′U−1 + I)Y

= (U +AXVX ′A′)−1(UAXVX ′A′U−1 + U)Y

= (U +AXVX ′A′)−1(AXVX ′A′ + U)Y

= Y

 .

Thus AXβ = 0 what can be derived explicitly from (15) . In a result we obtained Denton additive 
method with constant as an explanatory variable which can be concerned as the least valuable 
method .

2.2 Proportional approach
Picking E = I gives similar distribution results as additive Denton method . In fact, almost all of 
the methods mentioned previously distribute errors quite uniformly what will be presented in the 
result section . One may be interested in proportional distribution of error term . In Denton ap-
proach it is done by picking E = Diag(X)Diag(X) . For other methods we usually have more than 
one explanatory variable . This problem can be solved two-fold:
•picking one of the explanatory variables — available for all methods but not always suitable,
•picking Xβ̂ — after obtaining estimate β̂ of β we may define E = Diag(Xβ̂)Diag(Xβ̂) or just 

which refer to squared Euclidean and squared chi-square distance function . Then we estimate 
β and e as in Additive approach .

3 Comparison of Methods — Case of Gross Value Added in Construction

We disaggregated quarterly data on gross value added in construction (current prices) with a use 
of monthly data on number of dwellings completed covering 2002–2015 period . Quarterly data on 
number of dwellings completed is definitely connected with gross value added in construction but 
moderately correlated — correlations coefficient is 0,544 . 1 It is just exercise to show performance 
of the methods — not to disaggregate data as well as possible — and to reveal meaningfulness of 
our proposition . Methods proposed in this paper were applied using “Matrix” package in RStudio 
program and own code . All of the computation for others methods were made using “tempdisagg” 
package which is designed for temporal disaggregation process . These packages are available on 
R-CRAN project website .

For Denton method we used single indicator (number of dwellings completed) while for oth-
er methods we added constant term for regression stage of temporal disaggregation . For ap-
proach proposed and investigated in this paper we picked B = I and E = I in Additive approach, 
E = Diag(Xβ̂)Diag(Xβ̂) in Proportional approach and simulate results for E = 𝜆I for different 
𝜆 > 0 choosing one of the reasonable outcomes in Calibrated additive approach . Results of the 
methods are presented in table 1 . Last three rows pertain to methods described in this paper . Dis-
aggregated time series can be divided into two groups: Denton-Cholette, Proportional approach, 
Denton proportional and the rest . The second big group is very homogenous . Each two time series 
are linearly correlated with at least 0,94 of correlation coefficient . The first group is rather hetero-
geneous . It may be the result of picking different E matrix — for Denton it is based on X while for 
Proportional approach it is based on Xβ̂  . The table shows the crucial moment of temporal disag-
gregation — the third quarter of 2003 . Let us have a look at what happens in July . Number of dwell-
ings completed reached 43 000 which is four times greater than average in the 2002–2015 period .

Definitively, regression lead to very high estimate of gross value added in construction in July . 
In consequence, aggregated value added for the third quarter before benchmarking reached — e .g ., 
38 000 (29 in July, 4 in August, 3 in September) in Chow-Lin-maxlog method, while true value 
was 14 000 . When the discrepancy of 24 000 was distributed quite uniformly then each monthly 

1. [In the journal European practice of number notation is followed — for example, 36 333,33 (European style) 
= 36 333.33 (Canadian style) = 36,333.33 (US and British style). — Ed.]
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estimate was decreased by 8 000 on average . Most of the methods produced negative results in 
the third quarter what is unacceptable . Figure 1 shows how the selected methods reflected pick of 
dwellings completed in July . What is worth to notice, in a case of moderate and low correlation be-
tween low frequency data variance-covariance matrix based on Xβ̂ produces “flatter” time series 
than matrix based on what is visible comparing Proportional approach and Denton proportional . 
X affects error term e as it would be high correlation between low frequency data while it is not a 
case . Xβ̂ reflects it in a better way . In a case of high correlation Xβ̂ and Xβ̂ would produce similar 
distribution of error term .

Tab. 1. Results of the methods for 2003

Method
Month

I II III IV V VI VII VIII IX X XI XII
Dwellings completed 9 607 9 554 8 492 9 573 10 524 18 585 43 492 6 458 8 174 9 548 9 214 19 465
Denton-Cholette 2 848 2 020 1 703 2 444 2 959 5 114 9 261 1 878 3 184 4 913 5 051 9 606
Denton additive 2 960 2 508 1 103 1 896 1 491 7 130 28 547 −9 101 −5 123 1 389 3 794 14 386
Denton proportional 2 853 2 019 1 699 2 443 2 959 5 115 9 261 1 878 3 184 4 913 5 051 9 606
Fernzandez 3 002 2 278 1 291 2 194 2 166 6 155 20 816 −4 755 −1 738 3 149 4 801 11 620
Litterman-maxlog 3 002 2 278 1 291 2 194 2 166 6 155 20 816 −4 755 −1 738 3 149 4 801 11 620
Litterman-Linrss 2 644 2 363 1 564 2 409 1 849 6 258 25 301 −7 479 −3 499 1 867 4 307 13 396
Chow-Lin-minrss-ecotrim 2 998 2 274 1 298 2 107 2 185 6 225 20 418 −4 469 −1 626 3 341 4 838 11 391
Chow-Lin-minrss-quilis 3 001 2 283 1 287 2 184 2 154 6 178 20 955 −4 831 −1 801 3 122 4 782 11 665
Additive approach 2 433 2 400 1 738 1 436 2 028 7 053 19 806 −3 276 −2 207 4 532 4 324 10 713
Proportional approach 2 144 2 153 2 274 3 702 3 819 2 996 6 176 3 667 4 481 5 322 5 164 9 083
Calibrated additive approach 2 322 2 304 1 945 2 384 2 705 5 428 12 921 411 991 5 444 5 331 8 794

Fig. 1. Graphical representation of selected methods results
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Additive approach produced very similar outcomes to — for example — Chow-Lin and Fernan-
dez . It is especially interesting due to the fact that β̂ was not obtained classically from GLS regres-
sion for low frequency data but just from minimizing RRS for error term and regularization term .

Calibrated additive approach seems to be most suitable . It allows to avoid negative values . 
Moreover, changing lambda parameter smoothly changes outcomes from Additive approach to-
wards Proportional approach . For extremely high values of lambda parameter we obtain Denton 
additive approach with constant as an explanatory variable . The advantage over Proportional ap-
proach is that it is still one-stage procedure while Proportional approach involves obtaining β̂ first 
and then performing whole procedure . That is, in fact, two-stage procedure . Lambda parameter 
allows to simply set the trade-off between regression and benchmarking .

Summary

Methods of temporal disaggregation will be paid more and more attention due to the possibility of 
obtaining high frequency data without increasing burden of interviewers and interviewees . At this 
moment most of the methods are two-stages consisting of regression and benchmarking . In a case 
of poor performance of regression stage, benchmarking may lead to unacceptable results . In this 
article we propose a method which performs regression and benchmarking at the same time and 
allows to set a trade-off between them .
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