Altman E.I.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance 23(1968), p. 589-609.
DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Altman E.I.: Predicting financial distress of companies: revisiting the Z-score and ZETA® models (2000), http://www.stern.nyu.edu/~ealtman/Zscores.pdf.
Altman E.I., Marco G., Varetto F.: Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks, Journal of Banking & Finance 18(1994), p. 505-529.
DOI: https://doi.org/10.1016/0378-4266(94)90007-8
Back B., Laitinen T., Sere K.: Neural networks and bankruptcy prediction: Funds flows, accrual ratios, and accounting data, Advances in Accounting 14(1996), p. 23-37.
Beaver W.H.: Financial Ratios as Predictors of Failure Empirical Research in Accounting: Selected Studies, Supplement to Journal of Accounting Research 4(1966), p. 71-111.
DOI: https://doi.org/10.2307/2490171
Burda A.: Prognozowanie kondycji ekonomiczno-finansowej przedsiębiorstw z wykorzystaniem sztucznych sieci neuronowych, Barometr Regionalny 6(2006), p. 67-75.
DOI: https://doi.org/10.56583/br.1657
Burda A., Kuczmowska B., Hippe Z.S.: Ensembles of Artificial Neural Networks for Predicting Economic Situation of Small and Medium Enterprises In: Kurzyński, M.; Puchala, E.; Wozniak, M.; Zolnierek, A. (Eds.) Computer Recognition Systems 2, Springer, Berlin-Heidelberg 2007, p. 808-815.
DOI: https://doi.org/10.1007/978-3-540-75175-5_100
Burda A., Kuczmowska B., Hippe Z.S.: Zespoły sztucznych sieci neuronowych do przewidywania stanu ekonomicznego małych i średnich przedsiębiorstw, Zamojskie Studia i Materiały 23(2007), p. 113-126.
Coats, P.K. & L.F. Fant : A neural network approach to forecasting distress, The Journal of Business Forecasting (Winter 1991), p. 9-12.
Fletcher D., Goss E.: Forecasting with neural networks. An application using bankruptcy data, Information & Management. 24(1993), p. 159-167.
DOI: https://doi.org/10.1016/0378-7206(93)90064-Z
McKee T., Greenstein M.: Predicting Bankruptcy Using Recursive Partitioning and a Realistically Proportioned Data Set, Journal of Forecasting 19(2000), p. 219-230.
DOI: https://doi.org/10.1002/(SICI)1099-131X(200004)19:3<219::AID-FOR752>3.0.CO;2-J
Odom M., Sharda R.: A neural network model for bankruptcy prediction, International Joint Conference on Neural Networks, San Diego, cz. II(1990), p. 163-168.
DOI: https://doi.org/10.1109/IJCNN.1990.137710
Ohlson J.A.: Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research 18(1980), p. 109-131.
DOI: https://doi.org/10.2307/2490395
Osowski S.: Sieci neuronowe, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1994, s. 75-79.
Salchenberger, L., Cinar E., Lash N.: Neural networks: A new tool for predicting thrift failures, Decision Sciences, Vol. 23, No. 4(1992), p. 899-916.
DOI: https://doi.org/10.1111/j.1540-5915.1992.tb00425.x
Sarkar S., Sriram R. S.: Bayesian Models for Early Warning of Bank Failures, Management Science 47(2001), p. 1457-1475.
DOI: https://doi.org/10.1287/mnsc.47.11.1457.10253
Tam K.Y., Kiang M.: Predicting Bank Failures- A Neural Network Approach, Applied Artificial Intelligence 4(1990), p. 265-282.
DOI: https://doi.org/10.1080/08839519008927951
Tam K., Kiang M.: Managerial applications of neural networks: The case of bank failure predictions, Management Science 38:7(July 1992), p. 926-947.
DOI: https://doi.org/10.1287/mnsc.38.7.926
Trigueiros D., Taffler R.: Neural networks and empirical research in accounting, Accounting and Business Research 26:4(1996), p. 347-355.
DOI: https://doi.org/10.1080/00014788.1996.9729524
Wilson R.L., Sharda R.: Bankruptcy prediction using neural networks, Decision Support Systems 11(1994), p. 545-557.
DOI: https://doi.org/10.1016/0167-9236(94)90024-8