Abbott, A.D. 2001. Time Matters. On Theory and Method. Chicago: University of Chicago Press.
Adadi, A., and M. Berrada. 2018. “Peeking Inside the Black-Box: a Survey on Explainable Artificial Intelligence (XAI).” IEEE Access 6:52138–52160. doi: 10.1109/ACCESS.2018.2870052.
DOI: https://doi.org/10.1109/ACCESS.2018.2870052
Aggarwal, C.C. 2017. “An Introduction to Outlier Analysis.” In Outlier Analysis, 1–34. Cham: Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-319-54765-7_1
Aggarwal, C.C., and S. Sathe. 2017. Outlier Ensembles. An Introduction. Cham: Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-319-54765-7
Agyemang, M., K. Barker, and R. Alhajj. 2006. “A Comprehensive Survey of Numeric and Symbolic Outlier Mining Techniques.” Intelligent Data Analysis 10:521–538. doi: 10.3233/IDA-2006-10604.
DOI: https://doi.org/10.3233/IDA-2006-10604
Augusteijn, M.F., and B.A. Folkert. 2002. “Neural Network Classification and Novelty Detection.” International Journal of Remote Sensing 23 (14):2891–2902. doi: 10.1080/01431160110055804.
DOI: https://doi.org/10.1080/01431160110055804
Bailey, J.J., and R.J. O’Connor. 1975. “Operationalizing Incrementalism: Measuring the Muddles.” Public Administration Review 35 (1):60–66. doi: 10.2307/975202.
DOI: https://doi.org/10.2307/975202
Barnett, V., and T. Lewis. 1994. Outliers in Statistical Data. 3rd ed., Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. Chichester – New York: Wiley.
Baró, X., H.J. Escalante, S. Escalera, U. Güçlü, Y.m. Güçlütürk, I. Guyon, and M. van Gerven, eds. 2018. Explainable and Interpretable Models in Computer Vision and Machine Learning. Cham: Springer International Publishing.
DOI: https://doi.org/10.1007/978-3-319-98131-4
Bartkowiak, A. 2011. “Anomaly, Novelty, One-Class Classification: a Comprehensive Introduction.” International Journal of Computer Information Systems and Industrial Management Applications 3:061–071.
DOI: https://doi.org/10.1109/CISIM.2010.5643699
Baumgartner, F.R., and D.A. Epp. 2013. “Explaining Punctuations.” Annual Meetings of the Comparative Agendas Project, Antwerp, Belgium, June 27–29.
Baumgartner, F.R., and B.D. Jones. 2009. Agendas and Instability in American Politics. 2nd ed., Chicago Studies in American Politics. Chicago: The University of Chicago Press.
Baumgartner, F.R., B.D. Jones, and P.B. Mortensen. 2017. “Punctuated Equilibrium Theory: Explaining Stability and Change in Public Policymaking.” In Theories of the Policy Process, edited by C.M. Weible and P.A. Sabatier, 155–187. New York, NY: Westview Press.
DOI: https://doi.org/10.4324/9780429494284-3
Benkabou, S.-E., K. Benabdeslem, and B. Canitia. 2018. “Unsupervised Outlier Detection for Time Series by Entropy and Dynamic Time Warping.” Knowledge and Information Systems 54 (2):463–486. doi: 10.1007/s10115-017-1067-8.
DOI: https://doi.org/10.1007/s10115-017-1067-8
Berry, W.D. 1990. “The Confusing Case of Budgetary Incrementalism: Too Many Meanings for a Single Concept.” The Journal of Politics 52 (1):167–196. doi: 10.2307/2131424.
DOI: https://doi.org/10.2307/2131424
Billor, N., A.S. Hadi, and P.F. Velleman. 2000. “BACON: Blocked Adaptive Computationally Efficient Outlier Nominators.” Computational Statistics & Data Analysis 34 (3):279–298. doi: 10.1016/S0167-9473(99)00101-2.
DOI: https://doi.org/10.1016/S0167-9473(99)00101-2
Breunig, C., and B.D. Jones. 2011. “Stochastic Process Methods with an Application to Budgetary Data.” Political Analysis 19 (1):103–117.
DOI: https://doi.org/10.1093/pan/mpq038
Breunig, C., and C. Koski. 2006. “Punctuated Equilibria and Budgets in the American States.” Policy Studies Journal 34 (3):363–379. doi: 10.1111/j.1541-0072.2006.00177.x.
DOI: https://doi.org/10.1111/j.1541-0072.2006.00177.x
Breunig, M.M., H.-P. Kriegel, R.T. Ng, and J. Sander. 2000. “LOF: Identifying Density-Based Local Outliers.” Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, Texas, USA.
DOI: https://doi.org/10.1145/342009.335388
Brotherton, T., and T. Johnson. 2001. “Anomaly Detection for Advanced Military Aircraft Using Neural Networks.” 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542), March 10–17.
Campos, G.O., A. Zimek, J. Sander, R.J.G.B. Campello, B. Micenková, E. Schubert, I. Assent, and M.E. Houle. 2016. “On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study.” Data Mining and Knowledge Discovery 30 (4):891–927. doi: 10.1007/s10618-015-0444-8.
DOI: https://doi.org/10.1007/s10618-015-0444-8
Chandola, V., A. Banerjee, and V. Kumar. 2009. “Anomaly Detection: a Survey.” ACM Computing Surveys 41 (3):1–58. doi: 10.1145/1541880.1541882.
DOI: https://doi.org/10.1145/1541880.1541882
Colaresi, M., and Z. Mahmood. 2017. “Do the Robot: Lessons from Machine Learning to Improve Conflict Forecasting.” Journal of Peace Research 54 (2):193–214.
DOI: https://doi.org/10.1177/0022343316682065
Cui, Y., S. Ahmad, and J. Hawkins. 2016. “Continuous Online Sequence Learning with an Unsupervised Neural Network Model.” Neural Computation 28 (11):2474–2504. doi: 10.1162/NECO_a_00893.
DOI: https://doi.org/10.1162/NECO_a_00893
Dasgupta, D., and S. Forrest. 1996. “Novelty Detection in Time Series Data Using Ideas from Immunology.” ISCA 5th International Conference on Intelligent Systems, Reno, USA, June 19–21.
Davis, O.A., M.A.H. Dempster, and A. Wildavsky. 1974. “Towards a Predictive Theory of Government Expenditure: Us Domestic Appropriations.” British Journal of Political Science 4 (4):419–452. doi: 10.1017/S0007123400009650.
DOI: https://doi.org/10.1017/S0007123400009650
Desmarais, B.A. 2019. “Punctuated Equilibrium or Incrementalism in Policymaking: What We Can and Cannot Learn from the Distribution of Policy Changes.” Research & Politics 6 (3):1–6. doi: 10.1177/2053168019871399.
DOI: https://doi.org/10.1177/2053168019871399
Dezhbakhsh, H., S.M. Tohamy, and P.H. Aranson. 2003. “A New Approach for Testing Budgetary Incrementalism.” Journal of Politics 65 (2):532–558. doi: 10.1111/1468-2508.t01-3-00014.
DOI: https://doi.org/10.1111/1468-2508.t01-3-00014
Dowding, K., A. Hindmoor, and A. Martin. 2013. “Australian Public Policy: Attention, Content and Style.” Australian Journal of Public Administration 72 (2):82–88. doi: 10.1111/1467-8500.12012.
DOI: https://doi.org/10.1111/1467-8500.12012
Érdi, P.t. 2008. Complexity Explained, Springer Complexity. Berlin: Springer.
DOI: https://doi.org/10.1007/978-3-540-35778-0
Flink, C.M. 2017. “Rethinking Punctuated Equilibrium Theory: a Public Administration Approach to Budgetary Changes.” Policy Studies Journal 45 (1):101–120. doi: 10.1111/psj.12114.
DOI: https://doi.org/10.1111/psj.12114
Flink, C.M., and S.E. Robinson. 2020. “Corrective Policy Reactions: Positive and Negative Budgetary Punctuations.” Journal of Public Policy 40 (1):96–115. doi: 10.1017/S0143814X18000259.
DOI: https://doi.org/10.1017/S0143814X18000259
Forrest, S., A.S. Perelson, L. Allen, and R. Cherukuri. 1994. “Self-Nonself Discrimination in a Computer.” IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, May 16–18.
Garson, G.D. 1998. Neural Networks. An Introductory Guide for Social Scientists, New Technologies for Social Research. London – Thousand Oaks, CA: Sage.
Ghorbani, A., A. Abid, and J. Zou. 2019. “Interpretation of Neural Networks Is Fragile.” Proceedings of the AAAI Conference on Artificial Intelligence 33 (01):3681–3688. doi: 10.1609/aaai.v33i01.33013681.
DOI: https://doi.org/10.1609/aaai.v33i01.33013681
Givel, M. 2010. “The Evolution of the Theoretical Foundations of Punctuated Equilibrium Theory in Public Policy.” Review of Policy Research 27 (2):187–198. doi: 10.1111/j.1541-1338.2009.00437.x.
DOI: https://doi.org/10.1111/j.1541-1338.2009.00437.x
Gogoi, P., D.K. Bhattacharyya, B. Borah, and J.K. Kalita. 2011. “A Survey of Outlier Detection Methods in Network Anomaly Identification.” The Computer Journal 54 (4):570–588. doi: 10.1093/comjnl/bxr026.
DOI: https://doi.org/10.1093/comjnl/bxr026
Goldstein, M., and S. Uchida. 2016. “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.” PLoS One 11 (4):1–31 (e0152173). doi: 10.1371/journal.pone.0152173.
DOI: https://doi.org/10.1371/journal.pone.0152173
Grubbs, F.E. 1969. “Procedures for Detecting Outlying Observations in Samples.” Technometrics 11 (1):1–21. doi: 10.2307/1266761.
DOI: https://doi.org/10.1080/00401706.1969.10490657
Gumbel, E.J. 1958. Statistics of Extremes. New York: Columbia University Press.
DOI: https://doi.org/10.7312/gumb92958
Gupta, M., J. Gao, C.C. Aggarwal, and J. Han. 2014. “Outlier Detection for Temporal Data: a Survey.” IEEE Transactions on Knowledge and Data Engineering 26 (9):2250–2267. doi: 10.1109/TKDE.2013.184.
DOI: https://doi.org/10.1109/TKDE.2013.184
Hadi, A.S., A.H.M.R. Imon, and M. Werner. 2009. “Detection of Outliers.” WIREs Computational Statistics 1 (1):57–70. doi: 10.1002/wics.6.
DOI: https://doi.org/10.1002/wics.6
Haldane, J.B.S. 1928. Possible Worlds, and Other Papers. New York – London: Harper & Brothers.
Hastie, T., R. Tibshirani, and J.H. Friedman. 2009. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. 2nd ed., Springer Series in Statistics. New York, NY: Springer.
DOI: https://doi.org/10.1007/978-0-387-84858-7
Hawkins, D.M. 1980. Identification of Outliers, Monographs on Applied Probability and Statistics. London – New York: Chapman and Hall.
Hawkins, S., H. He, G. Williams, and R. Baxter. 2002. “Outlier Detection Using Replicator Neural Networks.” In Data Warehousing and Knowledge Discovery, edited by Y. Kambayashi, W. Winiwarter and M. Arikawa, 170–180. Berlin – Heidelberg: Springer Berlin Heidelberg.
DOI: https://doi.org/10.1007/3-540-46145-0_17
Haykin, S.S. 2009. Neural Networks and Learning Machines. 3rd ed. New York: Prentice Hall.
Hegelich, S. 2016. “Decision Trees and Random Forests: Machine Learning Techniques to Classify Rare Events.” European Policy Analysis 2 (1):98–120. doi: 10.18278/epa.2.1.7.
DOI: https://doi.org/10.18278/epa.2.1.7
Hegelich, S. 2017. “Deep Learning and Punctuated Equilibrium Theory.” Cognitive Systems Research 45:59–69. doi: 10.1016/j.cogsys.2017.02.006.
DOI: https://doi.org/10.1016/j.cogsys.2017.02.006
Hegelich, S., C. Fraune, and D. Knollmann. 2015. “Point Predictions and the Punctuated Equilibrium Theory: a Data Mining Approach — U.S. Nuclear Policy as Proof of Concept.” Policy Studies Journal 43 (2):228–256. doi: 10.1111/psj.12089.
DOI: https://doi.org/10.1111/psj.12089
Ho, S.L., M. Xie, and T.N. Goh. 2002. “A Comparative Study of Neural Network and Box-Jenkins ARIMA Modeling in Time Series Prediction.” Computers & Industrial Engineering 42 (2):371–375. doi: 10.1016/S0360-8352(02)00036-0.
DOI: https://doi.org/10.1016/S0360-8352(02)00036-0
Hodge, V., and J. Austin. 2004. “A Survey of Outlier Detection Methodologies.” Artificial Intelligence Review 22 (2):85–126. doi: 10.1023/B:AIRE.0000045502.10941.a9.
DOI: https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
Howlett, M. 2009. “Process Sequencing Policy Dynamics: beyond Homeostasis and Path Dependency.” Journal of Public Policy 29 (3):241–262.
DOI: https://doi.org/10.1017/S0143814X09990158
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. With Applications in R, Springer Texts in Statistics. New York: Springer.
DOI: https://doi.org/10.1007/978-1-4614-7138-7
John, P., and S. Bevan. 2012. “What Are Policy Punctuations? Large Changes in the Legislative Agenda of the UK Government, 1911–2008.” Policy Studies Journal 40 (1):89–108. doi: 10.1111/j.1541-0072.2011.00435.x.
DOI: https://doi.org/10.1111/j.1541-0072.2011.00435.x
John, P., and H. Margetts. 2003. “Policy Punctuations in the UK: Fluctuations and Equilibria in Central Government Expenditure Since 1951.” Public Administration 81 (3):411–432. doi: 10.1111/1467-9299.00354.
DOI: https://doi.org/10.1111/1467-9299.00354
Jones, B.D. 1999. “Bounded Rationality.” Annual Review of Political Science 2 (1):297–321. doi: 10.1146/annurev.polisci.2.1.297.
DOI: https://doi.org/10.1146/annurev.polisci.2.1.297
Jones, B.D. 2003. “Bounded Rationality and Political Science: Lessons from Public Administration and Public Policy.” Journal of Public Administration Research and Theory: J-PART 13 (4):395–412.
DOI: https://doi.org/10.1093/jopart/mug028
Jones, B.D. 2016. “The Comparative Policy Agendas Projects as Measurement Systems: Response to Dowding, Hindmoor and Martin.” Journal of Public Policy 36 (1):31–46. doi: 10.1017/S0143814X15000161.
DOI: https://doi.org/10.1017/S0143814X15000161
Jones, B.D., and F.R. Baumgartner. 2005. The Politics of Attention. How Government Prioritizes Problems. Chicago: University of Chicago Press.
Jones, B.D., and F.R. Baumgartner. 2012. “From There to Here: Punctuated Equilibrium to the General Punctuation Thesis to a Theory of Government Information Processing.” Policy Studies Journal 40 (1):1–20. doi: 10.1111/j.1541-0072.2011.00431.x.
DOI: https://doi.org/10.1111/j.1541-0072.2011.00431.x
Jones, B.D., F.R. Baumgartner, C. Breunig, C. Wlezien, S. Soroka, M. Foucault, A. François, C. Green-Pedersen, C. Koski, P. John, P.B. Mortensen, F. Varone, and S. Walgrave. 2009. “A General Empirical Law of Public Budgets: a Comparative Analysis.” American Journal of Political Science 53 (4):855–873.
DOI: https://doi.org/10.1111/j.1540-5907.2009.00405.x
Jones, B.D., F.R. Baumgartner, and J.L. True. 1998. “Policy Punctuations: U.S. Budget Authority, 1947–1995.” The Journal of Politics 60 (1):1–33. doi: 10.2307/2647999.
DOI: https://doi.org/10.2307/2647999
Jones, B.D., T. Sulkin, and H.A. Larsen. 2003. “Policy Punctuations in American Political Institutions.” The American Political Science Review 97 (1):151–169.
DOI: https://doi.org/10.1017/S0003055403000583
Jordan, M.M. 2003. “Punctuations and Agendas: a New Look at Local Government Budget Expenditures.” Journal of Policy Analysis and Management 22 (3):345–360.
DOI: https://doi.org/10.1002/pam.10136
Kemp, K.A. 1982. “Instability in Budgeting for Federal Regulatory Agencies.” Social Science Quarterly 63 (4):643–660.
Khan, S.S., and M.G. Madden. 2014. “One-Class Classification: Taxonomy of Study and Review of Techniques.” The Knowledge Engineering Review 29 (3):345–374. doi: 10.1017/S026988891300043X.
DOI: https://doi.org/10.1017/S026988891300043X
Knorr, E.M., R.T. Ng, and R.H. Zamar. 2001. “Robust Space Transformations for Distance-Based Operations.” 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, August 26–29.
DOI: https://doi.org/10.1145/502512.502532
Kohonen, T. 2001. Self-Organizing Maps. 3rd ed., Springer Series in Information Sciences. Berlin – New York: Springer.
DOI: https://doi.org/10.1007/978-3-642-56927-2
Kriegel, H.-P., E. Schubert, and A. Zimek. 2017. “The (Black) Art of Runtime Evaluation: Are We Comparing Algorithms or Implementations?” Knowledge and Information Systems 52 (2):341–378. doi: 10.1007/s10115-016-1004-2.
DOI: https://doi.org/10.1007/s10115-016-1004-2
Laptev, N., S. Amizadeh, and I. Flint. 2015. “Generic and Scalable Framework for Automated Time-Series Anomaly Detection.” 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10–13.
DOI: https://doi.org/10.1145/2783258.2788611
Laurikkala, J., M. Juhola, and E. Kentala. 2000. “Informal Identification of Outliers in Medical Data.” 5th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology [held] at the 14th European Conference on Artificial Intelligence (ECAI-2000), Berlin, Germany, August 20–25.
Lindblom, C.E. 1959. “The Science of ‘Muddling Through’.” Public Administration Review 19 (2):79–88. doi: 10.2307/973677.
DOI: https://doi.org/10.2307/973677
Lindblom, C.E. 1979. “Still Muddling, Not Yet Through.” Public Administration Review 39 (6):517–526. doi: 10.2307/976178.
DOI: https://doi.org/10.2307/976178
Ma, J., and S. Perkins. 2003. “Online Novelty Detection on Temporal Sequences.” 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C., August 24–27.
DOI: https://doi.org/10.1145/956750.956828
Maciąg, P.S., M. Kryszkiewicz, R. Bembenik, J. L. Lobo, and J. Del Ser. 2021. “Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks.” Neural Networks 139:118–139. doi: 10.1016/j.neunet.2021.02.017.
DOI: https://doi.org/10.1016/j.neunet.2021.02.017
March, J.G., and H.A. Simon. 1958. Organizations. New York: Wiley.
Marsland, S. 2001. “On-Line Novelty Detection through Self-Organisation, with Application to Inspection Robotics.” doctoral thesis, Department of Computer Science, University of Manchester.
Marsland, S. 2003. “Novelty Detection in Learning Systems.” Neural Computing Surveys 3:157–195.
McCulloch, W.S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5 (4):115–133. doi: 10.1007/BF02478259.
DOI: https://doi.org/10.1007/BF02478259
Munir, M., S.A. Siddiqui, M.A. Chattha, A. Dengel, and S. Ahmed. 2019. “FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models.” Sensors 19 (11):2451. doi: 10.3390/s19112451.
DOI: https://doi.org/10.3390/s19112451
Munir, M., S.A. Siddiqui, A. Dengel, and S. Ahmed. 2019. “DeepAnT: a Deep Learning Approach for Unsupervised Anomaly Detection in Time Series.” IEEE Access 7:1991–2005. doi: 10.1109/ACCESS.2018.2886457.
DOI: https://doi.org/10.1109/ACCESS.2018.2886457
O’Keefe, J., and L. Nadel. 1978. The Hippocampus as a Cognitive Map. Oxford – New York: Clarendon Press; Oxford University Press.
Oliveira, A.L.I., F.B.d.L. Neto, and S.R.d.L. Meira. 2004. “Combining MLP and RBF Neural Networks for Novelty Detection in Short Time Series.” MICAI 2004: Advances in Artificial Intelligence, Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, April 26–30.
DOI: https://doi.org/10.1007/978-3-540-24694-7_87
Olsson, T., and A. Holst. 2015. “A Probabilistic Approach to Aggregating Anomalies for Unsupervised Anomaly Detection with Industrial Applications.” 28th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2015, Hollywood, FL, USA, May 18–20.
Otey, M.E., A. Ghoting, and S. Parthasarathy. 2006. “Fast Distributed Outlier Detection in Mixed-Attribute Data Sets.” Data Mining and Knowledge Discovery 12 (2):203–228. doi: 10.1007/s10618-005-0014-6.
DOI: https://doi.org/10.1007/s10618-005-0014-6
Padgett, J.F. 1980. “Bounded Rationality in Budgetary Research.” The American Political Science Review 74 (2):354–372. doi: 10.2307/1960632.
DOI: https://doi.org/10.2307/1960632
Pimentel, M.A.F., D.A. Clifton, L. Clifton, and L. Tarassenko. 2014. “A Review of Novelty Detection.” Signal Processing 99:215–249. doi: 10.1016/j.sigpro.2013.12.026.
DOI: https://doi.org/10.1016/j.sigpro.2013.12.026
Prindle, D. 2006. “Stephen Jay Gould as a Political Theorist.” Politics and the Life Sciences 25 (1/2):2–14.
DOI: https://doi.org/10.2990/1471-5457(2006)25[2:SJGAAP]2.0.CO;2
Prindle, D.F. 2012. “Importing Concepts from Biology into Political Science: The Case of Punctuated Equilibrium.” Policy Studies Journal 40 (1):21–44. doi: 10.1111/j.1541-0072.2011.00432.x.
DOI: https://doi.org/10.1111/j.1541-0072.2011.00432.x
Robinson, S., E., C. Floun’say, K.J. Meier, and L.J. O’Toole Jr. 2007. “Explaining Policy Punctuations: Bureaucratization and Budget Change.” American Journal of Political Science 51 (1):140–150.
DOI: https://doi.org/10.1111/j.1540-5907.2007.00242.x
Robinson, S.E., C.M. Flink, and C.M. King. 2013. “Organizational History and Budgetary Punctuation.” Journal of Public Administration Research and Theory 24 (2):459–471. doi: 10.1093/jopart/mut035.
DOI: https://doi.org/10.1093/jopart/mut035
Schubert, E., R. Wojdanowski, A. Zimek, and H.-P. Kriegel. 2012. “On Evaluation of Outlier Rankings and Outlier Scores.” 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA, USA, Apr 26–28.
DOI: https://doi.org/10.1137/1.9781611972825.90
Sebók, M., and T. Berki. 2017. “Incrementalism and Punctuated Equilibrium in Hungarian Budgeting (1991–2013).” Journal of Public Budgeting, Accounting & Financial Management 29 (2):151–180. doi: 10.1108/JPBAFM-29-02-2017-B001.
DOI: https://doi.org/10.1108/JPBAFM-29-02-2017-B001
Simon, H. 2000. “Public Administration in Today’s World of Organizations and Markets.” PS: Political Science & Politics 33 (4):749–756. doi: 10.2307/420911.
DOI: https://doi.org/10.2307/420911
Simon, H.A. 1955. “A Behavioral Model of Rational Choice.” The Quarterly Journal of Economics 69 (1):99–118. doi: 10.2307/1884852.
DOI: https://doi.org/10.2307/1884852
Struye, J., and S. Latré. 2020. “Hierarchical Temporal Memory and Recurrent Neural Networks for Time Series Prediction: an Empirical Validation and Reduction to Multilayer Perceptrons.” Neurocomputing 396:291–301. doi: 10.1016/j.neucom.2018.09.098.
DOI: https://doi.org/10.1016/j.neucom.2018.09.098
Surace, C., and K. Worden. 2010. “Novelty Detection in a Changing Environment: a Negative Selection Approach.” Mechanical Systems and Signal Processing 24 (4):1114–1128. doi: 10.1016/j.ymssp.2009.09.009.
DOI: https://doi.org/10.1016/j.ymssp.2009.09.009
Tax, D.M.J. 2001. “One-Class Classification: Concept Learning in the Absence of Counter-Examples.” doctoral thesis, Technische Universiteit Delft (The Netherlands).
Tukey, J.W. 1977. Exploratory Data Analysis, Addison-Wesley Series in Behavioral Science. Reading, Mass.: Addison-Wesley Pub. Co.
Vasconcelos, G.C. 1995. “An Investigation of Feedforward Neural Networks with Respect to the Detection of Spurious Patterns.” doctoral thesis, University of Kent at Canterbury.
DOI: https://doi.org/10.1016/0167-8655(94)00092-H
Wallace, B., S. Akhavan-Masouleh, A. Davis, M. Wojnowicz, and J.H. Brock (Cylance Data Science Team). 2017. Introduction to Artificial Intelligence for Security Professionals. Irvine, CA: The Cylance Press.
Wildavsky, A.B. 1964. The Politics of the Budgetary Process. Boston: Little.
Williams, G., R. Baxter, H. He, S. Hawkins, and L. Gu. 2002. “A Comparative Study of RNN for Outlier Detection in Data Mining.” 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, December 9–12.
Wong, D., S. Poll, and K. KrishnaKumar. 2005. “Aircraft Fault Detection and Classification Using Multi-Level Immune Learning System.” Infotech@Aerospace Conference, Arlington, Virginia, September 26–29.
DOI: https://doi.org/10.2514/6.2005-6998
Xu, X., H. Liu, and M. Yao. 2019. “Recent Progress of Anomaly Detection.” Complexity 2019:2686378. doi: 10.1155/2019/2686378.
DOI: https://doi.org/10.1155/2019/2686378
Yamanishi, K., J.-i. Takeuchi, G. Williams, and P. Milne. 2004. “On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms.” Data Mining and Knowledge Discovery 8 (3):275–300. doi: 10.1023/B:DAMI.0000023676.72185.7c.
DOI: https://doi.org/10.1023/B:DAMI.0000023676.72185.7c
Zimek, A., R.J.G.B. Campello, and J. Sander. 2014. “Ensembles for Unsupervised Outlier Detection: Challenges and Research Questions a Position Paper.” ACM SIGKDD Explorations Newsletter 15 (1):11–22. doi: 10.1145/2594473.2594476.
DOI: https://doi.org/10.1145/2594473.2594476