Czerniak J.M., Ofn ant method based on tsp ant colony optimization, in: Prokopowicz, P., Czerniak,
J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered
Fuzzy Numbers. A Tribute to Professor Witold Kosinski, chap. 12, “Studies in Fuzziness and Soft
Computing” 2017, pp. 207-222.
Czerniak J.M., Dobrosielski W.T., Filipowicz I., Comparing fuzzy numbers using defuzzificators on
ofn shapes, in: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D.
(eds.) Theory and Applications of OrderedFuzzy Numbers. A Tribute to Professor Witold Kosinski,
chap. 6, “Studies in Fuzziness and Soft Computing” 2017, pp. 207-222.
Czerniak J.M., Zarzycki H., Artificial acari optimization as a new strategy for global optimization of
multimodal functions, “Journal of Computational Science” 2017.
Czerniak J., Filipowicz I., Ewald D., The novel shape normalization operator for fuzzy numbers in ofn
notation, in: Kacprzyk, J. e.a. (ed.) Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017,
DOI: https://doi.org/10.1007/978-3-319-66830-7
EUSFLAT 2017, “Advances in Intelligent Systems and Computing” 2018, vol. 641, pp. 548-562.
Dobrosielski W.T., Czerniak J.M., Zarzycki H., Szczepanski J., Fuzzy numbers applied to a heat
furnace control, in: Prokopowicz P., Czerniak J.M., Mikolajewski D., Apiecionek L., Slezak
D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold
Kosinski, chap. 16, pp. 207-222. “Studies in Fuzziness and Soft Computing” 2017, pp. 207-222.
Dobrosielski W., Czerniak J., Szczepanski J., Zarzycki H., Two new defuzzification methods useful
for different fuzzy arithmetics, in: et al., A.K. (ed.) Uncertainty and Imprecision in Decision Making
and Decision Support: CrossFertilization, New Models and Applications. IWIFSGN 2016.,
“Advances in Intelligent Systems and Computing” 2018, vol. 559, pp. 83-101.
Ewald D., Czerniak, J., Zarzycki H., Ofnbee method used for solving a set of benchmarks, in: Kacprzyk,
J.e.a. (ed.) Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017,
“Advances in Intelligent Systems and Computing” 2018, vol. 642, pp. 24-35.
Ewald D., Czerniak J.M., Paprzycki M., A new ofnbee method as an example of fuzzy observance
applied for abc optimization, in: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek,
L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor
Witold Kosinski, chap. 12, “Studies in Fuzziness and Soft Computing” 2017, pp. 207-222.
Grandin T., Curtis S., Toy preferences in young pigs 59, 1984.
Grandin T., Curtis S., Greenough W., Effects of rearing environment on the behaviour of young pigs
, 1983.
Harris A., Patience J., Lonergan S., Dekkers J., Gabler N., Improved nutrient digestibility and retention
partially explains feed efficiency gains in pigs selected for low residual feed intake 90, 164-166, 2013.
DOI: https://doi.org/10.2527/jas.53855
Held S., Mason G., Mendl M., Using the piglet scream test to enhance piglet survival on farms: Data
from outdoor sows 16, 2007.
Kacprzyk J., Wilbik A., Using fuzzy linguistic summaries for the comparison of time series: an application
to the analysis
of investment fund quotations, in: “IFSA/EUSFLAT Conf.” 2009, pp. 1321-1326.
Kosinski W., On fuzzy number calculus. “International Journal of Applied Mathematics and Computer
Science” 2006, 16(1), 51-57.
DOI: https://doi.org/10.1016/j.jelekin.2005.06.006
Kosinski W., Frischmuth K., Wilczyńska-Sztyma, D., A New Fuzzy Approach to Ordinary Differential
Equations, in:
Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) Proceedings of ICAISC
, Part I. “Lecture Notes in Computer Science” 2010, vol. 6113, pp. 120-127.
Kovac D., Beres M., Kovacova I., Vince T., Molnar J., Dziak J., Jacko P., Bucko R., Tomcikova I.,
Schweiner D.,
Circuit elements influence on optimal number of phases of DC/DC buck converter, “Electronics Letters”
, 54(7), 435–436. https://doi.org/10.1049/el.2018.0043
DOI: https://doi.org/10.1049/el.2018.0043
Kuhlmeier V., Boysen S., Animal cognition, 2006
DOI: https://doi.org/10.1002/0470018860.s00474
Małolepsza O., Methods of adaptation of knowledge systems based on fuzzy sets, “Studies and Materials
in Applied Computer Science” 2023, 15(1), 11-19.
DOI: https://doi.org/10.37624/JCSA/15.1.2023.11-19
Marszalek A., Burczynski T., Modeling and forecasting financial time series with ordered fuzzy candlesticks,
“Information Science” 2014, 273 (144-155).
DOI: https://doi.org/10.1016/j.ins.2014.03.026
McGlone J., E. Curtis S., Behavior and performance of weanling pigs in pens equipped with hide areas
, 20-4, 1985.
Patel B., Chen H., Ahuja A., F. Krieger J., Noblet J., Chambers S., S. Kassab G., Constitutive modeling
of the passive inflation-extension behavior of the swine colon 77, 2017.
DOI: https://doi.org/10.1016/j.jmbbm.2017.08.031
Pettigrew J.E., Essential role for simulation models in animal research and application, “Animal Production
Science” 2018, 58(4), 704-708.
DOI: https://doi.org/10.1016/j.tcs.2017.10.028
Piegat A., Pluciński M., Computing with words with the use of inverse rdm models of membership
functions, “International Journal of Applied Mathematics and Computer Science” 2015, 25(3),
-688.
Stachowiak A., Dyczkowski K., A similarity measure with uncertainty for incompletely known fuzzy
sets. Proceedings Of The 2013 Joint Ifsa World Congress And Nafips Annual Meeting (Ifsa/
Nafips), 2013, pp. 390-394.
Szmidt E., Kacprzyk J., Distances between intuitionistic fuzzy sets, “Fuzzy Sets and Systems” 2000,
DOI: https://doi.org/10.1016/S0165-0114(98)00244-9
, 505-518.